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1. Introduction

If the probabilistic structure of a time series going forward in 
time is identical to that in reverse time, the series is time 
reversible. If the series is not time reversible, it is said to be 
time irreversible. While the notion of time reversibility has a long 
history in physics and has been developed in the stochastic process 
literature within the framework of Markov chains, it was first 
mentioned in statistical time series analysis by Daniels (1946). The 
first formal statistical definition was given by Brillinger and 
Rosenblatt (1967, p. 210) about twenty years ago.

The issue of time reversibility is important for economics for 
both theoretical and empirical reasons. The behavior of key variables 
in representative members of wide classes of conventional 
macroeconomic models is time reversible. For example, the cyclical 
component of output in Lucas's (1973) New Classical model is time 
reversible. Also, the growth rates of output and other variables in 
Eichenbaum and Singleton's (1986) Real Business Cycle model are time 
reversible. Evidence that these time series are time irreversibile
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would then show that an implication of these models is not satisfied 
by the data.

Both of these models are members of the class of "Frisch-type" 
business cycle models. These are models based on the distinction 
between impulse and propagation mechanisms, Independently and 
identically distributed shocks provide impulses which affect output 
through distributed lag relations, the propagation mechanism. This 
modelling strategy stems from the early work of Frisch (1937) and 
Slutsky (1933) in which they showed that a linear system of equations 
driven by random shocks could produce business cycle-like behavior in 
the sample path of a random variable.1 2 Blanchard and Fischer (1989) 
stress that, while macroeconomists disagree both as to the main 
sources of these shocks (e.g., real or nominal, demand or supply, 
stemming from the private sector or from the government) and the exact 
nature of the propagation mechanism, the Frisch-type approach is 
currently the dominant one in both theoretical and empirical 
macroeconomics.

Blatt (1980) recently demonstrated that Frisch-type models are 
unable to capture cyclical asymmetries; asymmetries due to differences

See Sargent (1979, Chapter 9) for more details.
2 Blanchard and Fischer (1989, p. 311) note that theoretical 
models often suggest the presence of nonlinearities. They point out, 
however, that these nonlinearities usually do not play a crucial in 
the propagation mechanisms.
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in the dynamic structure across business cycle expansions and 
contractions. If a time series is time reversible, it is 
straightworward to see that the probabilistic structure as the series 
increases is the same as when the series decreases. Thus, the result 
that fluctuations in Frisch-type models are symmetric implies that 
these models are time reversible. In this light, the empirical 
question of business cycle asymmetry, studied in a line of work opened 
up by Neftci (1984), is seen to be a question of whether the dynamic 
behavior of key macroeconomic variables is time reversible. In this 
dissertation, then, I define business cycle asymmetry as time 
irreversibility. This provides a unified framework for addressing the 
issue.

Evidence that key macroeconomic variables have irreversible ♦
dynamics would then suggest that a Frisch-type approach might be 
inappropriate and misleading. For example, in the energy economics 
literature researchers have begun to address the issue of long-run 
price asymmetries.3 This refers to a hysteresis-type phenomenon in 
which the long-run equilibrium relationship is itself a function of 
history. I use the term hysteresis in the loose sense of Blanchard 
and Summers (1986, p. 17), to represent a case in which the degree of

I am indebted to Professor Dermot Gately for this reference.
Details can be found in Sweeney (1986). See Gately and Rappoport
(1986) for an empirical application.
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dependence on the past is very high. It may be that, for example, 
after a period of lower prices the system tends toward a higher demand 
function/ In the literature it has been stressed that such long-run 
asymmetries are incompatible with distributed-lag propagation 
mechanisms. Hence, if long-run asymmetries are important, incorrect 
inferences would be drawn from a distributed-lag demand function 
estimated over a period in which, for example, price reductions follow 
price increases.

If the rate of adjustment toward long-run equilibrium differs 
across phases of the business cycle, then conventional forecasting 
techniques, such as Gaussian ARMA models, will clearly be biased. If 
movements are slower in expansions than in contractions, the standard 
time series tools will be biased upwards during expansions and they 
will under-predict during contractions. It can indeed be shown 
formally that stationary Gaussian ARMA models are time reversible. 
Hence, detection of irreversibility in a particular time series 
implies that the conventional Gaussian ARMA approach is not an

To his great credit, Georgescu-Roegen (1950) anticipated the 
current discussion of hysteresis effects in his critique of the 
conventional static view of the law of demand. He argued that 
preferences depend upon the economic experience of the individual 
agent. As such, he claimed that following an initial change in 
prices, except by chance no new shift in prices alone can bring the 
consumer back to his original position, since his indifference map has 
been altered.
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appropriate modelling strategy. This point has been strongly 
emphasized by Tong (1983) and Subba Rao and Gabr (1984). Irreversible 
behavior would require consideration of alternative time series models 
capable of capturing this property.

Recent work suggests that this may generate fruitful results. 
Consider the problem of forecasting, in difference stationary form, 
quarterly U.S. GNP. In an important paper Potter (1989) reported an 
improvement, over traditional autoregressive models, of more than 10% 
in root mean square error using one-step ahead forecasts from a 
threshold autoregressive (TAR) model. The TAR model consists of a set 
of autoregressive models, one of which is chosen for any particular 
period conditional on the state of the system at some lag. Within 
each regime the model is linear, but the model switches across regimes 
as some threshold value is passed. If the type of asymmetry mentioned 
above is indeed present for some business cycle indicator, the TAR 
approach would be a natural one to adopt (e.g., different models for 
expansions and contractions).

In this dissertation I introduce a time domain test statistic to 
identify and characterize time irreversible stationary time series.
No other test for time irreversibility has been developed in the 
literature. The statistic is constructed by taking the difference 
between two particular bicovariances for a time series. In this sense 
the test shares some common features with the bispectrum frequency
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domain test of Hinich (1982)5. However, my test is far less data 
intensive than Hinich's and, perhaps more importantly, can serve as a 
direct guide to specification of an appropriate time series model. As 
such this test is in line with the general research program, initiated 
by Hinich and his colleagues, of trying to detect nonlinear behavior

ein economic time series .
In Chapter 2, I survey the major empirical work done on the 

business cycle asymmetry hypothesis. In this chapter I also review 
two related research programs in the time series literature: (1) the 
BDS test of Brock, Dechert and Scheinkman (1988); and (2) the Hinich's 
bispectrum test.

In Chapter 3, time reversibility is defined formally 
and a tool for identifying time irreversible processes, the symmetric- 
bicovariance function, is introduced. In this chapter it is shown 
that independently and identically distributed processes and Gaussian 
ARMA processes are time reversible. Further, by way of simple 
examples it is shown that time irreversibility can result from two 
sources: (1) the underlying innovations to the process are drawn from

Hsieh (1988) and LeBaron (1988) also look at sample 
bicovariances to detect nonlinearities. A recent paper which utilizes 
the sample bicovariances, but in a different context, is Ramsey and 
Montenegro (1988).
6 Hinich and Patterson (1985a), Hinich and Patterson (1985b), 
Ashley, Patterson and Hinich (1986), Hinich and Patterson (1987).
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a non-symmetric probability density function; (2) the underlying model 
is nonlinear.

A test statistic designed to detect time irreversibility is 
presented in Chapter 4. The statistic is the sample estimate of the 
symmetric-bicovariance function. Its sampling distribution is 
investigated in this chapter. For the independently and identically 
distributed case, an exact expression for the variance of the 
statistic is be given. It is shown that, for this case, the statistic 
is asymptotically distributed normal. By way of an approximate 
expression, I show that the variance of the statistic is much larger 
in the ARMA case relative to the independently and identically 
distributed case. This motivates the transformation, in the ARMA 
case, to residuals from an ARMA model fitted to the original data. A 
portmanteau version of the estimated symmetric-bicovariance function 
is also studied in this chapter. Monte Carlo results are presented to 
study the small sample properties of the test under the null 
hypothesis

In Chapter 5, I estimate the power of the test. Through Monte 
Carlo simulations I track the power of the test against Bilinear and 
Threshold Autoregressive models. Power comparisons are made against 
both the BDS test and Hinich's test.

I apply the tests to economic and financial time series in 
Chapter 6. For each series, I first calculate a set of portmanteau
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statistics on ARMA residuals. Then, I estimate the symmetric- 
bicovariance function on the ARMA residuals.

Chapter 7 concludes the dissertation. The results of the 
preceding sections are summarized and elaborated. Suggestions for 
future work are made.



www.manaraa.com

-1 1 -

2. Literature Survey

A. Empirical tfork on the Business Cycle Asymmetry Hypothesis

An unresolved issue in business cycle analysis is whether the 
business cycle is symmetric. Claims that the business cycle is 
asymmetric can be traced back at least to Mitchell (1927) and Keynes 
(1936). From these and other writers came the proposition that the 
business cycle is asymmetric in the following sense: upturns are
longer, but less steep, than downturns.

Burns and Mitchell (1947) attempted to quantify this asymmetry in 
the following sense. Having detrended the data by removing a log- 
linear trend, they first dated peaks and troughs for successive cycles 
using the National Bureau of Economic Research identification rules. 
For each cycle, the slope of the expansion was defined as the slope of 
the line connecting the trough to the peak. Analogously, the slope of 
the contraction was defined as the absolute value of the slope of the 
line connecting the peak to the trough. According to the asymmetry 
hypothesis, the average slope of expansions should differ from the 
average slope of contractions.7 Their test of asymmetry thus

Blatt (1980) more recently proved that this equality between the 
average expansion and contraction slopes is a property of all Frisch- 
type models.
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consisted of checking whether these two slopes indeed differed for 
several business cycle indicators.

For many financial and production series, they found evidence of 
asymmetry in the sense defined above. However, no strict hypothesis 
testing was carried out. A reasonable test would seem to be a two 
sample goodness of fit test to see if the set of expansion slopes was 
drawn from the same probability distribution function as the set of 
contraction slopes. But standard procedures, such as the Kolmogorov- 
Smirnov and Cramer-von Mises tests, would not be appropriate due to 
the lack of independence within and across the two sets of slope

nmeasurements.

B. Neftci's Markov Chain Test for Asymmetry

Attempts in the recent literature to resolve the question of 
whether business cycles are asymmetric are mixed. Neftci (1984) 
reopened this issue with evidence suggesting that the time series 
behavior of several alternative definitions of the aggregate quarterly 
unemployment rate is asymmetric.

Blatt (1983, p. 242) ignored this lack of independence when he 
tested, with the Cramer-von Mises test, whether the two sets of slopes 
for pigiron production were drawn from the same probability 
distribution function.
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Letting {X^ be a stationary economic time series, Neftci defined 
the state-indicator sequence (It) by:

1 if AX* > 0
It " (2.1)0 if AXt S 0

He made the following two assumptions about the sequence (It): (1)
(It) is a stationary stochastic process; and (2) {It) is a second- 
order Markov process. These two assumptions were later made by Neftci 
and McNevin (1986) and Falk (1986).

Let ST - {ix, i2, ..., iT) denote a realization of (It). The log- 
likelihood function corresponding to a given realization ST of (It) 
is:

L(Sj ,P m ,p10i > • • •) “  nu r lo e(Pxu) + no n , l o S ( l - P m )  +

n i o i ' l o 8 ( P i o i )  +  n ooi '  l o 8 ( 1 _ Pioi^ +  

n 01o - l ° g ( P o i o )  n n o ’ I ° S ( I " P o i o ^  

n0oo-lo S(Pooo) nioo' logd-Pooo) I°g(*oo) >

(2 .2)
where

Pkji “  P ro b ( I t  -  k | I w  -  j ,  It.2 -  i ) ,

-  the  number o f  occurrences  o f  ( I t -  k | -  j  , It_2 -  i )  ,

*oo “  P ro b ( I2 -  i 2, Ix -  i x) ,
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k,j ,i - 1,2 and t - 3, ..., T.

The test of symmetry Neftci considered is:

H0= P m  ” Pooo (2.3)

In testing (2.3), one maximizes (2.2) twice: under the alternative 
hypothesis (an unconstrained maximization problem) and again subject 
to the constraint (2.3). The resultant (log) likelihood ratio 
statistic (when multiplied by -2) is asymptotically distributed Chi- 
square with one degree of freedom. Given the presence of the initial 
state probability x0, a complicated nonlinear estimation routine is 
required to obtain the maximum likelihood estimates of the transition 
probabilities.

Neftci reported evidence against (2.3) for several post-war 
aggregate unemployment rate series. He used quarterly data on the 
overall unemployment rate, unemployment rate for insured workers and 
the unemployment rate fifteen weeks and over. In particular he found 

Pooo 5,1 P m  f°r a-*-l these variables, a result which could not be 
rejected at the 80 percent confidence level.

However, Sichel (1989) identified an error in Neftci's maximum 
likelihood calculations. Making corrections he showed that Neftci's 
second-order Markov procedure provides no evidence of asymmetry in the 
aggregate quarterly unemployment rate. Sichel also showed that the 
power of Neftci1s procedure is relatively low.
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Under the assumption that (It) is a first-order Markov process, 
the log-likelihood function is:

L(ST,pn ,p00) - nu -log(pu ) + n01-log(l-pu ) +

n 00- l ° g ( P o o )  +  n i o * 1 ° S ( 1 -Poo)  +  1 ° g ( ,r0)*

(2.4)
where
Pjl - Prob(It - j | Iw  - i),
nJA - the number of occurrences of (It - j | 1,.̂  - i) ,
n0 - Prob(I1 - ij) 
j ,i - 1,2 and t - 2, ..., T.

Ignoring the initial state probabilities jr00 and n0, and thereby
using an approximate likelihood technique, Rothman (1988) tested the 
order of the Markov process {Ifc) by subtracting the maximized value of 
(2.4) from the maximized value of (2.3). When multiplied by -2, this 
yields a log-likelihood ratio statistic which is asymptotically 
distributed as Chi-square with two degrees of freedom. By ignoring 
initial conditions, the calculations needed to obtain estimates of the 
transition probabilities are greatly simplified.

For most series considered, at the 90 percent confidence level 
Rothman could not reject the null hypothesis that the order of (It) is 
one. On the basis of these results, he concluded that it is more 
appropriate to assume the state-indicator sequence for these series is
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a first-order Markov process. One useful by-product of the first- 
order assumption is that the number of parameters to be estimated is 
halved and the number of degrees of freedom is increased.

Under the first order assumption, at the 80 percent confidence 
level Rothman could reject the null hypothesis that p00 - pn for the 
aggregate unemployment rate. This thus became the first paper to 
produce correctly evidence of asymmetry in the aggregate unemployment 
rate in a Markov chain framework.

Rothman next tested for the presence of Neftci-type asymmetry 
across industrial sector unemployment rates, under the first order 
assumption. The goal was to isolate those sectors which are the 
sources of the aggregate asymmetric behavior. His main finding was 
that the manufacturing sector drives the aggregate unemployment rate 
asymmetry.

Falk [1986] applied Neftci's test to quarterly U.S. real GNP, 
investment and productivity data and to production indexes for five
other O.E.C.D. countries.9 He found pm  > p000 for U.S. GNP and
investment and the opposite for productivity. For the first two
indicators the hypothesis that pm  > p000 could be rejected at the 80
percent confidence level but pm  < p000 could not be rejected for

Most of these time series are nonstationary. Falk thus applied 
several different trend removal procedures and reported that his 
results are not sensitive to the detrending procedure employed.
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productivity. To the extent that productivity is a pro-cyclical 
indicator, this is evidence of asymmetry in the direction opposite to 
that initially suggested by Mitchell and Keynes. For the O.E.C.D. 
countries, all hypotheses of asymmetry could be rejected. Falk thus 
concluded that the asymmetric business cycle hypothesis is the less 
compelling of the two.

C. DeLong and Summers' Skewness Test for Asymmetry

DeLong and Summers (1986) take a different approach in testing 
for business cycle asymmetry. Without proof, they claimed that the 
asymmetry hypothesis implies there should be skewness in the marginal 
frequency distribution of real GNP growth rates. Accordingly, they 
tested the condition that the skewness coefficient for this series is 
non-zero.

Since real GNP growth rates are not independently distributed, 
they decided to estimate the sampling variability of their skewness 
estimates by Monte Carlo simulation. First, an AR(3) process was 
estimated fcr the time series of growth rates. It was then used to 
generate 300 artificial series for the sample period under the 
assumption that the shocks to the autoregressive process were 
distributed standard normal. The empirical standard deviation of the 
estimated skewness under the null hypothesis was then calculated as
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the standard deviation of the skewness of the artificially generated 
series. Using this procedure they failed to reject symmetry for real 
GNP growth rates

There are two main problem with the DeLong and Summers approach. 
First, the AR(3) specification is inconsistent with identification 
through standard Box-Jenkins analysis. Usually an MA(1) or MA(2) 
specification is reported in the literature; see for example Nelson 
and Plosser (1982). As such, the standard errors they reported may be 
quite different from their true values. Second, they offered no 
verification for the assumption of normality for the estimated real 
GNP growth rate innovations. It probably would have been more 
appropriate to bootstrap with these estimated innovations.

Moreover, they presented no evidence on the power of their test. 
Welsh and Jernigan (1983) reported that estimated skewness 
coefficients had very low power against the asymmetric alternatives 
they studied. Thus, the power of DeLong and Summers' procedure may 
indeed be very low.

D. The BDS Statistic and Hinich's Bispectrum Test

Traditional economic time series analysis has been dominated by 
the class of linear Gaussian models. The test statistic introduced in 
this dissertation is designed to capture a property which these time
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series models do not possess. As such, the test is in line with two 
recent time series developments geared towards the detection of 
nonlinear and non-Gaussian behavior in economic time series: (1) the
BDS statistic; and (2) the Hinich bispectrum test.

-The BDS Statlstic-

Economists have recently become interested in testing for low 
dimensional chaos in economic and financial data. Observed time 
series generated by chaotic processes appear to be random utilizing 
conventional time series methods such as time series plots, the 
autocorrelation function and spectral analysis.

The correlation dimension, a measure of the relative rate of 
scaling of the density of points within a given space, permits a 
researcher to obtain topological information about the underlying 
system generating the observed data without requiring a prior 
commitment to a given structural model. If the time series is a 
realization of a random variable, the correlation dimension estimate 
should increase monotonically with the dimensionality of the space 
within which the points are contained. By contrast, if a low 
correlation dimension is obtained, this provides an indication that 
additional structure exists in the time series. In this way, the 
correlation dimension estimates may prove useful to economists wishing
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to scrutinize uncorrelated time series or the residuals from fitted 
linear time series models for information on possible nonlinear 
structure.

Brock, Dechert and Scheinkman (BDS) (1988) provided asymptotic 
results for the distribution of the standardized correlation integral 
when the observed points are generated by an independently and 
identically distributed set of random variables. The standardized 
correlation integral is commonly referred to as the BDS statistic.

Any sequence of points, {Xt) , t - 1,...,T, can be transformed 
into a sequence of d-tuples:

{(Xtl,xt2 xtd) ) .

These d-tuples, regarded as points in a d-dimensional Euclidian space, 
can be "plotted" and properties of the cloud of points so created 
examined. The choice of the value of 'd' is the choice of "embedding 
dimension"; it is the size of the Euclidian space into which the 
original is being fitted.

If the generated points are from observations on a random 
variable, then as d, the embedding dimension, is increased without 
bound and assuming an unlimited sample size, the size of the space 
into which the d-tuples will fit is 'd' for all values of 'd'; that 
is, random variables are space filling. But if the points are 
generated by a mechanism that is deterministic, or at least one that
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produces a shape that requires only 'k' dimensions, then as the 
embedding dimension is increased without limit, the dimension of the 
points will not increase beyond 'k'.

The sample correlation integral is given by:

0 ( 0  is the Heaviside step function which maps positive arguments into 
one, and non-positive arguments into zero. Thus, 0 ( 0  counts the 
number of points which are within distance 'r' from each other. 'r' 
is called the scaling parameter.

The BDS statistic is formed as follows:

C - C(r) - J* [F(z+r) - F(z-r)] dF(z),
F(0 “ cumulative distribution function for (Xt),
K - K(r) - J [F(z+r) - F(z-r)]2 dF(z).

Brock, Dechert and Scheinkman (1988) showed that w0(r,T) is 
asymptotically N(0,1) under the null hypothesis that (Xt) is 
independently and identically distributed.

C0(t,T) - T'2 
r>0,

wD(r,T) - 7t [ C„(t,T) - C1(t,T)D ] / aD(r,T), where
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The BDS statistic is sensitive to many deviations from 
independence. Hsieh and LeBaron (1988) showed that the BDS statistic 
has good power against the null hypothesis of independence. The 
alternative hypothesis is very broad as it includes not only chaotic 
attractors, but also linear and nonlinear stochastic processes. Brock
(1988) showed that the statistic is usefully applied to the residuals 
of estimated times series models.

In Chapter 4 below I compare the rate of convergence to the
asymptotic distribution for the BDS statistic and the time
irreversibility test statistic I introduce. Also, in Chapter 5 I 
compare the power of the two statistics for two different members of 
the alternative hypotheses. '

-Hinlch's Bispectrum Test-

Let {Xfc) be a real valued third order stationary process with 
mean n. The third order central moments C(t1,t2) is defined as:

C(t1,t2) - E[ (Xt-p) ( X ^ - m ) (X^-p) ] (2.5)

The bispectrum is the double Fourier transform of the third order 
cumulant function. More specifically, the bispectrum is defined for
frequencies and w2 in the domain:
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-23-

fi - { 0 < Wj < . 5, a>2 < , 2u)l + w2 < 1}, as
(2.6)

(1/2*)

The skewness function r(w1,u>2) is defined in terms of the 
bispectrium as follows:

where S(u>) is the spectrum of (Xt) at frequency w.
The following two results due to Brillinger (1965) provide the 

basis of Hinich's (1982) bispectrum test: (1) if (Xt) is Gaussian,
r(ultw2) is zero over all frequencies wlt w2 in 0; and (2) r(a>1(u>2) is 
constant overall frequencies wlt w2 in n if (Xt) is linear. Hinich 
produced a consistent and asymptotically complex normal estimator of 
the skewness function rCwj.Wg).

Call this estimator rCa .̂â ). Hinich showed that 2|r(w1,w2) |2 is 
approximately distributed as noncentral chi-squared with two degrees 
of freedom. Let P denote the number of frequency pairs in the 
principal domain fl. Then for all i and j such that the lattic square 
lies entirely within the principle domain, define the test statistic:

Under the null hypothesis that (Xt) is Gaussian and thus B(w1,w2) is 
identically zero, Hinich proved that CHISUM is approximately

rz(u>i,w2) - |B(w1,w2)|z / S(wx) S(w2) S(w1+o>2), (2.7)

CHISUM - 2 Si Sj ifCo^.Wj)!2 (2 .8)
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distributed as central chi-square with two degrees of freedom. The 
Hinich linearity test uses the empirical distribution of (21 TCtOj ,to2) | }

Ain the principal domain to test the hypothesis that the r ( w l t w2) ' s  are 
not all the same. The 80th quantile of these statistics is a robust 
single-test statistic for this dispersion.

Ashley, Patterson and Hinich (1986) proved an important 
equivalence theorem which states that the Hinich bispectral linearity 
test statistic is invariant to linear filtering of the data. More 
specifically, if (Yt) is generated by passing (Xfc) through a fixed, 
causal, linear filter with absolutely summable impulse response 
weights, then (Xt) and (Yt) have identical squared skewness functions. 
Thus, the linearity test can be either applied to the raw series or 
the residuals of a linear model. For the following nonlinear 
autoregressive model:

Xt - [.5 + + «t (2.9)

Ashley, Patterson and Hinich showed that the Hinich linearity test is 
equally powerful in detecting the nonlinearity regardless of whether 
the source or residual series (from an AR(2) fit) is used.

The estimated size and power of Hinich's bispectrum test and the 
time irreversibility test are compared in Chapters 4 and 5 below.
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-The BDS and Hinich Tests and Model Speclflcatlon-

In concluding this section, I wish to note the following feature 
of both the BDS and Hinich tests. While for some members of the 
respective alternative hypotheses both tests have good power, neither 
serves as a direct guide to specification of an appropriate time 
series model. More specifically, both tests yield little information 
about the source of deviation from the respective null hypotheses.

A good example of this is the recent paper by Stokes and Hinich
(1989). They first rejected linearity for the Box and Jenkins (1970) 
gas flow data. The modeling strategy subsequently adopted, the 
addition of terms to reduce the residual variance on the output 
series, was suggested by the Hinich test only to the extent that these 
alternative specifications involved the addition of nonlinear terms.



www.manaraa.com

3. Time Reversibility

One motivation for my dissertation topic is to present a 
statistical test that can help decide whether actual business cycles 
are symmetric or asymmetric. I begin by explaining the direction of 
recent research in the analysis of two celebrated data sets in the 
statistical time series literature, the Canadian lynx and the Wolf 
sunspot data series. The reason why I first focus on these series is 
that, as explained below, they exhibit time series properties 
consistent with the asymmetric business cycle hypotheses.

The Canadian lynx data set consists of records of annual Canadian 
lynx trappings around the Mackenzie River from 1821 to 1934 as 
recorded by the Hudson Bay Company10. The sunspot series is comprised 
of measurements, dating back to 1700, of annual means of the sunspot 
(or Wolf's relative) number, which is given by11:

R - K(10g + f), where
g - the number of groups of sunspots

The long history of the linear time series analysis of this 
data set is reviewed in Campbell and Walker (1977).
11 This formula was proposed by Rudolf Wolf of Zurich in 1848. 
Yule (1927) introduced the class of linear autoregressive models in 
his famous study of this series. The large literature of linear time 
series analysis of the data set that followed Yule's seminal paper is 
reviewed in Morris (1977).
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f - the total number of sunspots
K - a constant for the observatory where the 

observations are made

Over roughly the past ten years a consensus has developed that it 
is necessary to employ nonlinear time series methods in order to model 
these series appropriately; with respect to the Canadian lynx data, 
see Campbell and Walker (1977) and Tong (1977); and for the sunspot 
numbers series, see Tong and Lim (1980), Ghaddar (1980) and Lim 
(1981). A prominent property of both these series which has led to 
this conclusion is that, while both are cyclical, there appears to be 
an asymmetry between the lengths of ascent and descent periods. That 
is, in each cycle the gradient of the rise to the maximum differs from 
the gradient of the fall to the next minimum12. This feature has led 
both Tong (1983) and Subba Rao and Gabr (1984) to claim that these two 
series are time irreversible.

A general discussion of time reversibility is found in Tong 
(1983, pp. 25-31). A major theme of Tong's is that linear Gaussian 
ARMA models are not applicable to data exhibiting time 
irreve rs ib i1i ty.

See Tong (1983, pp. 166 and 231) for a tabulation of the 
asymmetry between the lengths of ascensions and descensions in these 
two series.
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A. Definition of Time Reversibility and Some Time Reversible Processes

The formal statistical definition of time reversibility is:

Definition 1: A time series {Xfc} is time reversible if for every
positive integer n, and every t1(t2 tn e R, the vectors
(X̂ .X,.̂ , . . . ,Xt ) and (X.^.X.^, . . . ,X_t ) have the same joint 
probability distributions. A time series which is not time reversible 
is said to be time irreversible.

Note that the above definition does not impose stationarity on 
the time series {Xt}. This is in contrast to an alternative 
definition of time reversibility found, for example, in Tong (1983) 
and Subba Rao and Gabr (1984), that requires stationarity.

I shall next show three cases for which (Xt) is time reversible: 
(1) (Xt) is independently and identically distributed; (2) (Xt) is 
independently, but not identically, distributed; (3) (Xt) is a 
stationary Gaussian process, but not necessarily independent.

Lemma 3.1: Let {Xfc) be a stationary process consisting of a
sequence of independently and identically distributed random 
variables, then {Xt} is time reversible.

Proof: By the independence assumption, the joint probability
distribution functions can be re-expressed as:
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Ft t (xt  xt ) “ Ft (xt ) * - ,FY (xf )*•1 h i  t l  n fcl  W  h i  h i

and (3.1)

F - fcl  - t ta(X - ‘ l  X- t n )  “  F - t 1 ( x - t i ) , " F - t ta<x - t B)

Since (Xt) is identically distributed:

Ft<xt> “ Ft'(xt')> t * t', V t and t' (3.2)
By (3.1) and (3.2) it is seen that Ff ¥ (xf  xt ) -

 h i n

F_f (x.f , . . . ,x.t ), so that (Xf) is time reversible.
fci   n l  h i fc

Example 3.1: Let {Xt) be the process defined by the sequence of
independently, but not identically, distributed random variables where 
Ft(xt) - N(/j-tz,a2), then {Xt) is time reversible and clearly non- 
stationary.

By the independence assumption, the joint probability 
distribution functions can be re-expressed as:

Ft t (xt » • • • ixt ) “ Ft (xt )' * -F» (xt )fcl  h i t l  n fcl  H h i n

and (3.3)

F-t -t_(x-t x-t ) “ F-t (x-t )' ‘ *F.t (x-t )t l   h i V  h i n H n n

Since Ft(xt) - N(p-tz,o2):

Ft<xt) " F-t<x-t). v t, (3.4)
then by (3.3) and (3.4) it is seen that Ff t (xf ,...,xf ) -

*•1'• • • •h i  1 h i

F_t _t (x_t , . . . ,x_^) , so that {Xt) is time reversible.

t
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The importance of this example is that there exists a non- 
stationary process that is time reversible, so that non-stationarity 
does not imply time irreversibility. As is well known, see Tong 
(1983) and Subba Rao and Gabr (1984), stationarity does not imply time 
reversibility. Hence, stationarity and time reversibility are 
separate concepts and neither implies the other.

Below I shall assume, unless otherwise indicated, that (Xt) is 
stationary. I do this because only in the case of stationarity have I 
developed a fairly complete theory of time reversibility and of the 
distribution of the relevant test statistics.

The assumption of stationarity simplifies the analysis of 
reversibility and yields simpler, but more restrictive definitions of 
time reversibility. Suppose (Xfc) is time reversible. By the assumed
stationarity of (Xt), (X_ti,X_t2 X.^) and ( X . ^ . X . ^ ....X.^)
have the same joint distributions for any integer m. Consider the 
special case in which the time indices {t±) are constructed as
follows: tt - t ^  + k, k e R, i - 2  ni.e., the set (ti) is
characterized by equal, not necessarily integer, increments of time. 
Letting m - tx + tn, it is seen that for a stationary time series 
(Xt), time reversibility implies that the vectors (Xti,Xt ,...,Xt ) and
(X^.X,^ ....X,.̂) have the same joint probability distributions; this
is a stationary restricted definition.
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Without imposing stationarity in the definition of time 
reversibility, Lawrance (1988) restricted the elements of the sequence 
of time indices, {t±), to be separated by equal increments. Under 
this restriction he showed that time reversibility implies 
stationarity.

Lemma 3.2: Let {Xt) be a stationary Gaussian process, then (Xt)
is time reversible.

Proof: If (Xt) is a stationary Gaussian process with null mean
vector, but not necessarily diagonal covariance matrix, then the joint
probability density function of (Xt ,Xt  Xt ) is (see Priestley

1 2  n

(1984, p. 90)):

t (XJ.....X,,) - k'1 exp [ - (1/2) z] ,
l 1 1 n

where:
k - (2x)n/V /2
A - |S| - det(E), Z - {<7tj}, S'1 - (oiJ) (3.5)
E - covariance matrix of (X,. .X,.....X,̂ )

t t iJ,- Z Z a (x, -x,) 
i-ti J_ti y

But A and z are invariant to reversal of the order of the indices 
(i,j). Hence, (Xt) is time reversible.
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Note that from Lemma 3.2 it follows that all Gaussian ARMA models 
are time reversible. As such, an analyst who wishes to model a 
particular time series as a Gaussian ARMA process should indeed 
confirm that the observed data are time reversible. More 
specifically, if time irreversibility is discovered in the given time 
series a Gaussian ARMA approach would be an incorrect one to adopt.
The test presented below is designed to detect such time 
irreversibility.

The result that stationary Gaussian processes are time 
reversible appeared as Theorem 1 in Weiss (1975, p. 831). In the same 
paper, Weiss proved the converse of this result within the context of 
discrete-time ARMA models; this theorem was the main contribution of 
his paper. According to Weiss's Theorem 2. if (Xfc) is a stationary 
time reversible autoregressive moving average process given by:

xt “ s akxt-k + p e£et-£> (3-6>k-l £-1

with {efc) an independent and identically distributed sequence of 
non-degenerate random variables,

then the underlying sequence of independently and identically 
distributed innovations, {et), are normally distributed. This result 
strictly holds only if p t* 0, or if p - 0, the cases 6% - (£ =
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0,1 M) , 9 £ - -Oh.ji (X - 0,1,...,M) are excluded. The exclusion is
necessary since if 9% - 0M_̂  for X - 0,...,M, (Xt) is time reversible 
irrespective of the distribution of (ct), and if 9% - f°r  ̂“
0,...,M, then (Xt) is time reversible whenever {cfc) has a symmetric 
probability distribution. See Lemma 1 of Weiss's article.

Weiss conjectured, without proof, that this result holds when 
(Xt) is a general linear process. This conjecture was shown to be 
true in a recent paper by Hallin, Lefevre and Puri (1988).

B. A Property of Stationary Time Reversible Processes

I next establish the equality between certain pairs of moments 
from the joint probability distributions for a time reversible 
stationary time series {Xt) .

Lemma 3.3: Let (Xt) be a stationary time series and assume that
the multivariate characteristic generating functions of (Xt,Xt_k) and 
(Xt.k,Xt) can be expanded as a convergent series in the moments and 
cross .moments of the respective joint probability distributions; that 
is, it is assumed that the joint probability distributions are 
uniquely characterized by the respective sequence of moments and cross 
moments (see Kendall and Stuart (1962), Vol. I, pp. 109-110).

If (Xt) is time reversible, then:
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E^t’Xt-k 1 “ ], (3.7)

for all i,j,k e H, where the expectation is taken with respect to each 
respective joint distribution.

But, if {Xt) is time irreversible in the sense that 

Et,t-k(xt>xt-k) ^ Et_k t(xt_k,xt), then:

E^t/X^ ] * EtX^-X^ ] , (3.8)
for some i,j,k e  N.

Proof: By the definition of mathematical expectation:

E[X^XjU ] - /XtJXt_k Xlt-XtJ.kdFtit.k(-) (3.9)

and
E[Xt1.k-XJt] - fXt J Xt X^.-X dFt.k t( • ) (3.10)

If (Xt) is time reversible, then Ftfc_k(-) - Ft_k t( *). Thus, equation
(3.9) equals equation (3.10) for all i,j,k e N and condition (3.7) 
holds. Likewise, if Ft t_k(xt,xt_k) h Ft.k t(xt.k,xt) for some k, then 
equation (3.9) does not equal equation (3.10) for some i,j,k e N and 
statement (3.8) is true. Equation (3.9) does not equal equation
(3.10) for if not, the assumed uniqueness of the representation of the 
distributions by the moments would be violated.
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For i - j - 1:

EfXt-Xt.k] - E[Xt-Xt.k) (3.11)
for all positive integers k.

Statement (3.11) is simply the tautology that the autocovariance of a 
stationary time series at lag k is equal to itself. This is because 
the autocorrelation function is an even function of k. As such, it is 
seen that the autocovariance function can provide no relevant 
information with respect to the potential time irreversibility of any 
specific time series.

When at least one of i, j is greater than one, i,j e N, the two
terms in (3.7) are called generalized autocovariances, following the
terminology of Welsh and Jernigan (1983). From Lemma 3.3 it follows 
that if there exists a lag k for which these two moments do not equal 
one another, the series is time irreversible. While this is a 
sufficient condition for time irreversibility, it is not a necessary 
one, since (3.7) considers only a proper subset of moments from the 
joint distributions of (Xt ,Xt , . . . ,X.) and (X. ,Xt , . . . ,Xt ); that

1 2  t i t i  n-1 1

is, above I consider only the pairs (Xt,Xt_k) and (Xt_k,Xt)13.

I do not consider the case, for example, where Ft t (•) =
Ff k (•) but F.. t ■.(•)»* Ft » t(') for some t., t,, t, 6 £,2a situation 
tfet1 is unlikely ̂ c? occur itV^rSctice.
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C. The Symmetric-Bicovariance Function

I propose to consider the difference between two bicovariances.
I define the symmetric-bicovariance functions:

72>1(k) - (E[3̂ -Xt.k] - E[Xt-Xtz.k ])
and (3.12)

71>2(k) - {E[Xt• Xz.k ] - E[X*t-Xt_k])

for all integer values of k.

Note that 7 21(k) - *7 1 ,2 ^) V k e N. If (Xt) is time reversible, then
7 2 ,i(k) “ 7i,2^) - 0 V k e N. My reason for looking only at the
differences in bicovariances is that the distributional properties
will be more manageable than for the higher-order moments and that as
a practical matter the lower-order moments seem to be sufficiently 
informative14.

I shall demonstrate the time irreversibility of two different 
time series models using the symmetric-bicovariance function, one 
linear and one nonlinear. First, consider the following non-Gaussian 
MA(1) model:

I am indebted to Pomeau (1982) for the suggestion of studying 
£ime reversibility through a similar but higher-order function,
73 x(k). He did not, however, draw a direction connection between his 
proposed test and the formal statistical definition of reversibility. 
He also did not investigate the sampling of any estimator of y3 3(k).
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where {et) is a sequence of independent and identically distributed 
random variables drawn from a non-symmetric probability distribution 
function; 9 -1.

It is straightforward to show that:
E[4-Xw ] - E[(4 - 2 0 6 ^  + 92e2t.1 ).(ew  - 9et.z))

- 6Z£, where £  - EU 3̂
and that (3.14)

E[Xt-X2.1] - E[(et - 9et_1)-(e?_1 - 2*£t-i£t-2 + *Z& 2))

- -<>4

2 €Because y2 x(l) *■ (9 + 9)fi3 is non-zero under the given assumptions,
we conclude that (Xfc) is time irreversible. Note that if 9 - -1, Xt -

et + ct-i*
which is obviously time reversible.

Next, consider the following bilinear model:

xt “ “xt-i + 0xt-i£t-i + £t- (3-15)

where (et) is a sequence of independent and identically distributed 
N(0,1) random variables.
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It can be shown (see Subba Rao and Gabr (1984, pp. 53-57)) that:

- a2/i3 + + 2a0Q1 + /*,
and

E[xt-Xt2-i) " “ 3̂ + /5Qi. (3.16)
where
ix - E[XJ - /? / (1 - a),

A

ixz - E[X*} - (1 + 2/32 + 4a/3/x) / (1 - a2 - /52) ,

/i3 - Et^] - (1 - 2a/?2 - a3)'1-{/?3Q3 + Sa2̂  + 3/i(l + 6a/?2)),

Qj - - ( 3 / 1  - >32) - (1 + a2p2 + 2/?2 + 4a/?/x)

Q2 “ El^Ve^] - (1 - 3a/82)_1-(a3/i2 + /?3Q3 + 3a2/?Q1 + 9p)

Q3 “ “ (3 / 1 - >32) - (5 + 3/?2 + 3a2/i2 + 12a/?M)

Hence, for (Xt) given by (3.15) 72,i(1) H showing that (Xt) is time
irreversible, except for isolated pairs of values for (a,/3) that solve 
the above equations in (3.16) simultaneously.

The two examples demonstrate that time irreversibility as 
indicated by the symmetric-bicovariance function can stem from two 
sources: (1) the underlying model may be nonlinear even though the
innovations are symmetrically (perhaps normally) distributed; or (2) 
the underlying innovations may be drawn from an asymmetric probability
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distribution while the model is linear. I shall call the first Type 1 
time irreversibility and the second Type 2 time irreversibility. Type 
2 time irreversibility is removable by linear transformation; that is, 
the residuals obtained from the inverse linear transformation are 
independently and identically distributed so that by Lemma 3.1 the 
transformed series is time reversible.

I close this section by noting the operational definition of time 
reversibility in the frequency domain. In particular, the k-th order 
cumulant spectrum for time reversible processes is real valued (see 
Brillinger and Rosenblatt (1967, p. 210)). A test of time 
reversibility in the frequency domain, then, consists of checking 
whether the imaginary parts of the Fourier transforms of all cumulants 
are zero.
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4. A Test Statistic

A. The Estimated Symmetric-Bicovariance Function

The test statistic I propose to employ to check for the presence 
of time irreversibility consists of a sample estimate of the 
symmetric-bicovariance function given by equation (3.12). The sample 
bicovariances for a stationary time series {Xt) with T observations 
are:

B,x(k) - (T-k)"1']̂ T 4-Xt.k
t-k+l

and (4.1)

% 2(k) - (T-k)'1^ 1 Xt-Xt2.k
t-k+l

for various integer values of k.

It is straightforward to see that ^  x(k) and 2(k) are unbiased 
estimators of the bicovariances B2 x(k) - E[X^-Xt_k] and 2(k) - 
E[Xt-X̂ .k ], respectively.

I turn next to the consistency of the bicovariance estimators.
In addition to the restrictions on {Xt) made above, I now require that 
the sequence {Xt) have finite sixth-order moments and assume all 
second and third order moments to be in ik. By Theorem 1 of
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Rosenblatt and Van Ness (1965, p. 1125), the variance of these 
estimators goes to zero as T-wo. This result, along with the 
asymptotic unbiasedness of the estimators (which follows from their

A Asmall sample unbiasedness), establishes that ^  x(k) and 2(k) 
converge in quadratic mean to B21(k) and Bx 2(k) and that they are 
consistent.

With the bicovariance estimates from (4.1), the test statistic is 
constructed as follows:

Ti.lOO “ %.l<k> - V O O  (4.2)

for various integer values of k. 7 2 x(k), as a linear function of
^  x(k) and 2(k) , is unbiased and consistent and converges in 
quadratic mean to y2 x(k).

Formally, through 72 x(k) I test only for time reversibility as
exhibited in the bicovariance function. If one were interested in
testing for time reversibility as exhibited by higher-order moments, 
the test statistics in (4.2) can easily be generalized to arbitrary 

j(k), i,j ^ 2.. In this case, though, caution should be exercised 
in that the estimates of very high order moments have relatively high 
standard errors.
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B. The Sampling Distribution of in the I.I.D. Case

Under the null hypothesis that (Xt) is time reversible, the 
expected value of 7 21(k) is zero for all k. In order to make the 
test operational, though, it is necessary to examine the sampling 
distribution of the test statistic.

By definition, the variance of y2 x(k) is:

Var(72 x(k)) - Var(B, x(k)) + Var^ 2(k))
. ’ (4.3)

- 2-Cov(Bj ̂ kKBi ̂ k))

I begin by deriving the variance for 72 x(k) when (Xt) is a sequence of 
independently and identically distributed random variables. The exact 
small sample expressions for the sample bicovariances under the 
independently and identically distributed assumption are given in 
Lemma 4.1.

Lemma 4.1: Let (Xt) be a stationary sequence of independently
and identically distributed random variables for which E[Xt] - 0 V t, 
let p2 to be defined and finite. Then:

Var(Bj(1(k)) - Var(Bl 2(k)) - p4p2/(T-k)
and (4.4)

Cov(B, x(k) .B, 2(k)) - /^(T-k) + /i?(T-2k)/(T-k)2,
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where p2 - E[Ĵ .]

M3 -  E[3ej

^  - E[X*t]

Proof: By the independently and identically distributed
assumption and since E[Xt] - 0, E[X^Xt_k] - 0, V k 6 H. Thus, 
Var(B21(k)) - E[B, x(k)2] . That is:

Var(B,1(k)) - E[(T-k)'2.f T £* ^•Xt.k. ^ X 1.k]. (4.5)
t-k+l «-k+l

Since:
E [X̂ * Xt.k • X8.k ] - Map2, for t - s

and (4.6)

E^ 2-Xt-k-̂ 2-X8-k] “ ^  t H s,

and since the condition t - s occurs T-k times in the calculation of
Var(^x(k)), it follows from (4.5) and (4.6) that:

Var(B, x(k)) - /vi2/(T-k) (4.7)

An identical argument shows that:

Var(Bl 2(k)) - p4p2/(T-k) (4.8)

I next evaluate Cov(^ x(k) ,B̂  2(k) ) :
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Cov<^ x<k) .B, 2(k)> - E[ (T-k)"2 • I T I T Xt2-Xt.k-Xs.^.k]. (4.9)
t«k+l s-k+1

Since:

- 4. for s - t

E[^2-Xt.k-XB-̂ 2.k] - for s - t-k (4.10)
and

E[X^'Xt.k'X8-3̂2.k] - 0, for s * t and s i“ t-k,

and since the condition s - t-k occurs T-2k times in the calculation
of Cov(B^ x(k) , 2(k)), it follows from (4.9) and (4.10) that:

Cov(Bj^(k),^ 2(k)) - 4/(T‘k) + ^3(T-2k)/(T-k)2 (4.11)

Lemma 4.2: Let (Xt) be a stationary sequence of independently
and identically distributed random variables for which E[Xt] - 0 V t. 
Then:

Var(72il(k)) - 2(/vi2 - /ia)/(T-k) - 2^3(T-2k)/(T-k)2
(4.12)

- (2/T)[/xa/i2 - n3 - (£] , for large T and small k

Proof: By (4.3) and Lemma 4.1.

From equation (4.12) it is seen that, for (X,.) independently and 
identically distributed, Var(Jly2 x(k)) - 2(/j4/i2 - n3 - for large T.
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If the underlying distribution is normal, Var(jTyz ̂ k)) - 4fiz for 
large T, because fik - 3\iz and fi3 - 0.

By Theorem 4.3 of Welsh and Jernigan (1983, p. 391) the 
bicovariance estimators, j(k), are asymptotically distributed as 
N(0,Var(Bi(J(k))) under the condition that (Xt) is an independently and 
identically distributed sequence with finite sixth-order moments.

C. Finite Sample Properties of x(k) in the I.I.D. Case

I examined how quickly this convergence in distribution to the 
normal takes place for the case in which (Xt) is itself drawn from a 
normal distribution from Monte Carlo simulations using 1000 
iterations. The results of these simulations appear in Table 1 which 
reports the kurtosis measurements,the Kolmogorov-Smirnov statistics 
for goodness of fit to the normal distribution and the estimated 
variances of 72 x(l) for each run.

According to the observed Kolmogorov-Smirnov D statistics, one 
can not reject the null hypothesis that the underlying distribution of 
the set of yz x(l) is normally distributed for sample sizes greater 
than or equal to 100. This is true even at the 20% significance level 
except for sample size 50. The actual distributions are 
leptokurtotic, declining to the value for the normal.
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Tables 2 through 9 contain further Monte Carlo results on the 
finite sampling properties of 721(k) in the independently and 
identically distributed case. For four different distributions, the 
estimated size of 72 x(k) was calculated and the probability of
rejecting k or more times, k - 1,2.... 10, was estimated. The four
distributions studied were: (1) the standard normal; (2) the
chisquare with 1 degree of freedom; (3) the chisquare with 5 degrees 
of freedom; and (4) the standard exponential. Tables 2 through 5 
contain the estimated size of yz j(k) at various values of k for each 
case. Tables 6 through 9 contain simulation results on the
probability of rejecting k or more times, k - 1,2.... 10, for each
distribution.

The results on the estimated size of y2 x(k) strongly suggest that 
the convergence to the normal takes place by sample size 100 for all 
distributions considered. Apparently the rate of convergence to the 
normal is not sensitive to asymmetry of the probability density 
function. In Tables 6 through 9 the estimated probabilities of
rejecting k or more times, k - 1,2.... 10, are compared with the
probability of k or more successes in a sequence of 10 Bernoulli 
trials for which the probability of a success is 0.05, the size of the ' 
test under the null hypothesis. For each distribution, the estimated 
probabilities are close to the theoretical probabilities. This is 
evidence consistent with the y2 x(k) values being uncorrelated across
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k. This result is utilized in developing a portmanteau version of the 
test statistics.

D. Variance of ^  x(k) in the ARMA Case

The sampling distribution of 72,i(k) when (Xt) is independent and 
identically distributed provides a reference for the finite ARMA case. 
The exact small sample expression for Var(7 2 x(k)) when (Xt) is ARMA is 
algebraically complicated and its computation is tedious. Given that 
exact expressions for a far less complicated set of statistics, the 
sample autocorrelation func.tion, for example, are not generally 
known15, the difficulty is not surprising.

Using the symbolic logic program MATHEMATICA (see Wolfram 
(1988)), I obtained an approximate expression for Var(y2 x(k)) for the 
MA(q) case in which the underlying innovations are drawn from a 
symmetric probability distribution function. Because any ARMA model 
can be represented as an MA(«>) model, this approach provides some 
insight into the approximation for Var(y2 j(k)) in the ARMA case as 
well.

Let (Xt) be an invertible moving average process of order q:

See Priestly (1984, pp. 330-340).
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Vt-q* Where

{ct) is a sequence of random variables drawn from a symmetric p.d.f. 
and for which:

Then, for large T, k 2q + 1, and ignoring terms in products of 
the Si’s for which the sum of the powers equals or exceeds three, an 
approximate expression for the variance of y2 x(k) is given by:

Note that if 01 - 62 - ... - 6q - 0, (4.13) reduces, for large T and 
small k, to the result for the independently and identically 
distributed case given by equation (4.12). This approximation gives a 
lower bound on the true variance of y2 x(k) in the MA(q) case.

The accuracy of this approximation clearly depends upon the 
values of the fli's. Higher powers of the 8L’s were deleted in 
equation (4.13) on the assumption that such products are "small" 
relative to the main effects retained in the expression. In the 
appendix I give an exact expression for Var(y2 x(k)) in the MA(2) case 
for k & 5.

From equation (4.13) it is seen that the variance of y2 x(k) for 
the independently and identically distributed case is less than the

E[et] - 0, E[e\] - nz, and E[ê .] - /i*

(2/(T-k)) { + I + M2[-l + 3-I (4.13)i-i i-i
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variance of 72 j(k) for the MA(q) and general ARMA(p,q) cases. This 
comes from recognizing that the variance of 72 j(k) increases as the 
order of the MA process increases, since as q increases, only positive 
terms to the variance approximation are added, for large enough k.

E. A Transformation to Reduce Variance of ■£ :(k) in ARMA Case

It is seen then that Var(y2 j(k)) in the ARMA(p,q) case can be 
large; this is especially true for nearly non-stationary time series. 
However, a simple transformation enables one to reduce the variance 
substantially, at least asymptotically. The procedure is to fit an 
ARMA model to the original time series, and then estimate the 
symmetric-bicovariance function using the nearly uncorrelated 
residuals. The sampling distribution for the independently and 
identically distributed case can then be applied, as a useful 
approximation for large T, which is justified by the consistency of 
the estimates of the model's parameters. Approximate 95% confidence 
intervals can be formed by taking twice the Var(y2 1(k))1/2, using 
estimated third and fourth moments, in accordance with the expression 
in equation (4.12).

Monte Carlo results on applying this procedure to several AR(1) 
models are presented In Tables 10 through 24. For every iteration of 
the Monte Carlo runs, y2 x(k) was calculated on the residuals from an
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AR(1) model fitted to the original series. In Tables 10 through 18, 
results for the Gaussian AR(1) case are presented as the AR(1) 
coefficient varies from 0.9 to 0.1. Tables 19 through 24 present 
results for the AR(1) case with AR(1) coefficient equal to 0.9 and for 
which the innovation sequences are distributed chisquare with 1 degree 
of freedom, chisquare with 5 degrees of freedom and standard 
exponential.

For the Gaussian cases reported in Tables 10 through 18, at 
sample size 1 0 0  72 1 (k) appears to reject about twice as often as it 
should under the null hypothesis. The average size across k is .11 
while the size under the null is .05. the estimated size improves by 
sample size 250. For this sample size y2 x(k) rejects roughly 6 % of 
the time, slightly more often than should be rejected. By sample size 
500 72 x(k) appears to have converged to its asymptotic normal 
distribution. Note that these results are independent of the value of 
the AR(1) coefficient; that is the rate of convergence to the normal 
is the same as the AR(1) coefficient varies from 0.9 to 0.1. Thus, 
while the transformation to AR(1) residuals worsens the small sample 
properties of 72 >1(k) relative to the independently and identically 
distributed case, by sample size 250 the rejection rate differs only 
slightly from what it should be under the null.

Convergence of 7 2 x(k) to the normal is slower for the non- 
Gaussian AR(1) cases reported in Tables 19 to 24. With *2 (1)
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distributed innovations, at sample size 1 0 0  72<1 (k) rejects about two 
and half times more often than should be the case under the null 
hypothesis. The estimated size of y2 x(k) is reduced by a little less 
than one half by sample size 250. At sample size 500, the average 
size across k is .06 while the size under the null it is .05. The 
probability of rejection is reduced a bit by sample size 1 0 0 0  and 
convergence to the normal appears to take place by sample size 5000. 
Matters are slightly better with *2 (5) distributed innovations and 
standard exponentially distributed innovations.

F. Estimated Sizes of *£ 1(k) Compared to BDS and Hinlch Tests

Next I compare the estimated size of y2 x(k) to the estimated size 
of the BDS and Hinich linearity test statistics. Monte Carlo results 
reported by Hsieh and LeBaron (1988) on the estimated size of the BDS 
statistic for three cases, independently and identically distributed 
normal, independently and identically distributed *z(4) and Gaussian 
AR(1) residuals, are presented in Tables 25 through 27. Monte Carlo 
results reported by Ashley, Patterson and Hinich (1986) on the 
estimated size of the Hinich linearity test for the independently and 
identically distributed normal case are reported in Table 28.

Recall that for all independently and identically distributed 
sequences considered, y2 x(k) converges to the normal distribution by
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sample size 100. At this sample size the BDS statistic, at embedding 
dimension 2 , rejects from two to eight times more often than it should 
for the standard normal and *Z(4) cases. Great caution then should be 
exercised in interpreting results at this sample size in so far as the 
true a-levels are far greater than the nominal values. I return to 
this point when comparing the estimated power of the BDS statistic 
against y2 x(k) for a threshold autoregressive alternative. For the 
Gaussian AR(1) residuals, at embedding dimension 2 the BDS statistic 
rejects from two to six times as often as it should at sample size 
100. At this sample size, y2 x(k) uniformly rejects about twice as 
often as it should.

As sample size is increased to 500, the performance of the BDS 
statistic improves. At embedding dimension 2 and higer values of the 
scaling parameter r, for xz(4) size is about .06. For the lowest 
value of r reported, the BDS statstic rejects three times more often 
than it should. For the standard normal case matters are slightly 
worse, especially for smaller values of r. For the Gaussian AR(1) 
residuals, the estimated size of the BDS statistic is roughly .07 for 
higher values of r at embedding dimension 2. At this sample size,
72 x(k) has already converged to the normal distribution.

At sample size 1000, the estimated size of the BDS statistic is 
still higher than it should be for all three series considered. These
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results and those mentioned above all suggest that y2 x(k) converges to 
its asymptotic distribution more quickly than the BDS statistic does.

Results reported in Table 28 suggest that the Hinich linearity 
test converges to the normal distribution by sample size 512. For an 
independently and identically distributed normal sequence of sample 
size 256, the 80% Quantile Measure of {2|r(w1 ,w2) | ) rejects slightly 
more often than it should. At a nominal size of .05, the estimated 
size is .06 with smoothing constant M - 12 and .075 with M - 17.
Thus, for the independently and identically distributed normal case 
72 ii(k) converges to its asymptotic distribution more quickly than the 
Hinich linearity test. Ashley, Patterson and Hinich (1986) did not 
report simulation results on the estimated size of the Hinich 
linearity for any stochastic processes other than the independently 
and identically distributed normal.

G. A Portmanteau Version of the Test Statistics

The last topic I address in this chapter is a portmanteau version 
of time irreversibility test statistics. Recall the Monte Carlo 
results discussed above which suggested that the 72 x(k) values are 
uncorrelated across k. These results, along with the asymptotic 
normality of 7 2 j(k) for all k, motivate the following portmanteau test
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statistic which provides a joint test on a set of y2 x(k) values. I 
define:

pn>,„ “ 2 [72>1(k)]2 (4.14)
k*m

The results stated above imply that as a sum of the squares of 
uncorrelated normal random variables, Pm n is distributed x2 (n-m).

Table 29 reports Monte Carlo results on the distribution of two 
versions of Pran, P1 5  and P1>10, for four independently and identically 
distributed cases and for Gaussian AR(1) residuals. In each 
simulation, 1 0 0 0 0  observations on Px 5 and Px 10 were generated and 
Kolmogorov-Smirnov goodness of fit statistics were calculated to test 
the null hypotheses that P1 5  and Px 10 were distributed *z(5) and 
X (10). At sample size 250, the chisquare hypotheses can be rejected 
at the 1 % significance level for only two out of ten cases, Px 5 for 
the standard exponential case and Px 10 for the x2 (l) case. By sample 
size 500, the chisquare hypotheses can not rejected for any case up to 
even the 2 0 % significance level.

The portmanteau statistic Pm n provides a useful disgnostic to 
use along with the estimated symmetric-bicovariance function. As a 
first step it seems reasonable to test the hypothesis that a set of 
72 i(k) at various values of k are jointly significanly different from 
zero with Pmn. If Pmn rejects, then one proceeds to examine the 
pattern of rejection through the individual y2 x(k) values. The
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relation between Pn n and a set of y2 j(k) values is exactly analogous 
to the relation between the Q statistic and the estimated 
autocorrelation function.
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5. Estimating Power

I ran many Monte Carlo simulations in order to study the power of 
the time irreversibility test statistic y2 x(k). The two classes of 
models chosen to study were a bilinear BL(0,0,1,1) model and a 
threshold autoregressive TAR(l) model. For each class of model, the 
power was studied as both sample size and model parameters varied. In 
addition, a set of simulations was run in order to compare the power 
of 7 2,i(k) and Pmn against the power of the BDS statistic and Hinich's 
bispectrum linearity test.

Before getting into details, the results can be summarized as 
follows. For all TAR(l) models studied, the estimated power is high 
only at lag k - 1. For most of the BL(0,0,1,1) models considered, 
past lag k - 2 the estimated power seems to decline exponentially as 
the lag k increases. y2 x(k) is shown to be as equally or more 
powerful as the BDS statistic for a particular TAR(l) model studied by 
Hsieh and LeBaron; the power of the BDS statistics varies as the 
scaling parameter varies. As noted above, however, for finite sample 
size the true a-levels for the BDS statistic are often far greater 
than their nominal levels. Finally, y2 x(k) and the portmanteau 
statistics have greater estimated power than Hinich's test against a 
TAR(l) alternative but lower estimated power than Hinich's test 
against a bilinear alternative.
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A. Estimated Power of *£(1(k) Against Two Classes of Alternatives

Tables 30 through 32 present results for the following bilinear 
model:

Xt - + et, €t~N(0,l) (5.1)

for P - .9,. 8 ..... 1, at sample size 100, 250 and 500, respectively.
As expected, the estimated probability of rejection increases as 
sample size increases. With the exception of lag k - 1, at each 
sample size the power is a declining function of the parameter p. In
so far as the coefficient p can be interpreted as an index of time 
irreversibility, then the results show that the power of the test 
increases as the degree of irreversibility increases. An interesting 
pattern emerges at lag k - 1. As f} goes from .9 to . 6 , the power 
decreases at all sample sizes. But the power at p - .5,.4,.3,.2, is 
greater than it is at p - .6 . This is true at all sample sizes. At 
the first lag, the power appears to be greatest at p - .4 and p - .3.
For sample size 250, the probability of rejection at lag k - 1 is
greater than .9 at both p - .4 and p - .3.

Tables 33 through 35 present results for the following threshold 
autoregressive model:
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x t “  a > x w  +  i f  x t-i *  1
( 5 . 2 )

x t "  - - 4 -x t-i +  ^  X t-i <  1. ‘t ~ N ( 0 . 1 )

for a — Note that for a — .4, (5.2) is a standard
AR(1) model. The following feature of the TAR(l) model stands out in 
these tables. That is, significant rejections show up only at lag 
k - 1. For almost all sample sizes and almost all parameter values, 
the probability of rejection at lag k h 1 is not far from the nominal 
value of .05. In contrast, for the bilinear model (5.1) significant 
rejections also show up at lag k - 2,3,4,5. Interpreting the quantity 
|a + .4| as an index of time irreversibility for this model, then at 
lag k - 1 , the power of the test unambiguously increases as the degree 
of time irreversibility increases at all sample sizes. Note that when 
the value of the index equals zero, i.e., a - -.4 and the model 
collapses to a conventional AR(1) model, the probability of a 
rejection at lag k - 1 is roughly equal to the nominal size of .05.

B. Estimated Power of Portmanteau Statistics Against Two Alternatives

Letting f) - .9 for the bilinear model and a - -.9 for the 
threshold autoregressive model, I also ran Monte Carlo simulations to 
estimate the power of the portmanteau statistics Pj 5 and Px 10. For 
the bilinear model, Px 5 appears to have more power than Pj 10,
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reaching a probability of rejection equal to . 8 8  at sample size 500. 
Comparing with results presented in Tables 30-33, it is seen that the 
portmanteau statistics have greater estimated power than y2 x(k) at any 
single lag k. Recall that in contrast to the TAR(l) models studied, 
significant rejections for the BL(0,0,1,1) models occur at lags other 
than just k — 1. This is the apparent cause of the increase in 
estimated power brought about by performing a joint test through the 
portmanteau statistics.

On the other hand, the estimated power of Px 5 and Px 10 is less 
than the estimated power of 72 1 (k) at lag k - 1 for the TAR(l) model 
at all sample sizes. This is consistent with the results presented in 
Tables 33-35 in which significant rejections occur only at lag k - 1 
for this model. For this model neither Px 5 nor Pĵ 10 seems to have 
more power than the other, in contrast to the bilinear case. At 
sample size 500, they reach a power of .52 and .57, respectively.

C. Power Comparison with BDS Test

Hsieh and LeBaron (1988) studied the power of the BDS statistic 
for the following threshold autoregressive model:

Xt - .5-Xw  + «t, if X,., £ 1
(5.3)

Xt - --4-Xw + et, if Xw  < 1, «t-N(0,l)
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The results at nominal size equal to .05 are found below in Table 37. 
At low values of the scaling parameter for embedding dimension 2, the 
power of the BDS statistic is greater than .9 by sample size 500. 
Recall, however, the results on the estimated sizes of the BDS 
statistic. More specifically, at sample size 500 for all values of 
r/a the true a-values are greater than the nominal level of .05 in the 
independently and identically distributed N(0,1) case. For the two 
lowest values of the scaling parameter, r/a - 0.25 and r/a - 0.50, the 
estimated sizes of the statistic were approximately five and two times 
its nominal level. At sample size 1000, the power reaches 1.00 at 
these lower values of the scaling parameter for embedding dimension 2 .

Table 38 reports results on the power of y2 x(k). Above I noted 
that for TAR(l) models, significant rejections appear to show up only 
at lag k - 1. Restricting attention to this lag, the estimated power 
of y2 x(k) compares very well to the estimated power of the BDS 
statistic. By sample size 500, the probability of rejection at lag 
k - 1 is equal to .97. The estimated power of the BDS statistics is 
slightly higher, at .98, only for r/a - 0.50. However, recall that 
the true a-level for the BDS statistics, at sample size 500 and at 
r/a - 0.50, is most likely significantly higher. If the nominal size 
for 72 x(k) at lag k - 1 were set higher, chances are good that the 
estimated power would also increase. At sample size 500, the
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estimated power of 72>1(k) at ^aS k — 1 is greater than the power of 
the BDS statistic for values of r/a greater than 0.50. By sample size 
1 0 0 0 , the estimated probability of rejection for 72 x(k) at lag k - 1  

is 1.00. This matches the estimated power of the BDS statistic for 
low values of r/a at this sample size and is greater than the 
estimated power for r/a - 1.50 and r/a - 2.00.

Thus, ignoring the high estimated sizes of the BDS statistic at 
low values of r/a, y2 x(k) at lag k - 1 is found to have equal or 
greater estimated power than the BDS statistic. At low values of r/a, 
it has equal power. At higher values of r/a, its estimated power is 
greater. „ On the other hand, if the effectively low nominal levels for 
low values of r/a are taken into consideration, 7 2 x(k) at lag k - 1 is 
found to be more powerful than the BDS statistic across all values of 
the scaling parameter.

D. Power Comparison with Hinich Test

Ashley, Patterson and Hinich (1986) studied the power of the 
following threshold autoregressive model:

Xt - - .5-Xw  + £t, if Xw  2: 1
(5.4)

Xt - .4-X^ + £t, if Xt.x < 1, £t~N(0,1)

They also studied the power of the following bilinear model:
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xt ” + £t» et*-N(0 ,l) (5.5)

Their results for the Hinich linearity test appear below in Table 39. 
By sample size 500, the test rejects with probability .55 for the 
TAR(l) model and with probability .96 for the BL(0,0,1,1) model. By 
sample size 1 0 0 , the probabilities reach .80 and 1 . 0 0  for the two 
models.

Table 40 reports results on the power of y2 x(k) for the TAR(l) 
model (5.4). Recall once again the significant rejections for this 
class of model show up just at lag k - 1. At this lag, the
probability of rejection equals .997 and 1.00 at sample size 500 and
1000, respectively. Thus, the power of y2 x(l) is greater than the
power of Hinich's linearity test for this TAR(l) model. Results for
the portmanteau statistics are found in Table 41. The probability of 
rejection of Pj 5 is equal to .98 and 1.00 at sample size 500 and 
1000, respectively. So Px 5 is also more powerful than Hinich's 
linearity test for this model.

Results on the power of y2 j(k) for the BL(0,0,1,1) model (5.5) 
can be found in Tables 30 through 32. By sample size 500, the 
probability of rejection for y2 x(l) and y2 x(2) is equal to .46 and 
.74. Results for the portmanteau statistics can be found in Table 41. 
The probability of rejection of Px 5 is equal to .78 and .94 at sample
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size 500 and 1000, respectively. Thus, Hinich's linearity test is 
more powerful than either y2 j(k) or Pj 5 for this model.
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6. Testing Economic Time Series

I tested several time series for time irreversibility. The 
series examined were: (1) the Wolf sunspot series, 1700-1955; (2) the 
Canadian lynx data, 1821-1934; (3) the log first differences of 
quarterly nominal GNP, 1946:1-1988:4, as reported in the Citibase 
databank (172 observations); (4) the monthly aggregate unemployment 
rate, 1948:01-1989:01, as reported in the Citibase databank (492 
observations); (5) the monthly manufacturing sector capacity 
utilization rate, 1948:01-1989:01, as reported in the Citibase 
databank (492 observations); (6 ) the log first differences of the 
monthly pigiron production series from 1877 to 1930 (637 
observations); (7) the value weighted weekly stock return data from 
July 1962 to July 1984 as computed by Scheinkman and LeBaron (1987) on 
the Center for Research in Security Prices (CRSP) data (1227 
observations); (8 ) weekly spot cotton prices from January 1972 to June 
198615 as reported in the WEFA Group Financial Data Base (702 
observations).

For each series, except for the stock returns data, I first 
fitted an ARMA model to the data. As is well known, the stock returns

While I had data out to November 1988 for cotton prices, from 
the time series plot it was clear that a structural break occurred 
after June 1986. I consequently deleted all observations after June 
1986.
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series exhibits very little serial correlation. The sample 
autocorrelation functions for each set of residuals for the other 
datasets contained no evidence of serial correlation. I calculated 
the portmanteau statistics and estimated the symmetric-bicovariance 
function for these series on the residuals. For the stock returns 
series, I calculated portmanteau statistics and the symmetric- 
bicovariance function on the original data. The calculated 
portmanteau statistics are reported in Table 42. The estimated 
symmetric-bicovariance functions, together with the confidence 
intervals, appear in Figures 1-8. For all series the approximate 95% 
confidence intervals were formed by taking twice the theoretical value 
of Var(7 2 1 (k) ) 1 / 2 for the independently and identically distributed 
case for the given sample size, using sample estimates of the third 
and fourth moments.

For each series I calculated the portmanteau statistics Px 5,
Pi 10, Px 20 and Px 30. The sunspot series rejects at the 5% 
significance level for each statistic while the lynx series does not 
reject for any statistic. Nominal GNP growth rate residuals reject 
for P1 2 0  and P1 3 0  but not for Px 5 and P1 1 0  at the 5% significance 
level. The aggregate unemployment rate rejects for each statistic 
while the capacity utilization rate rejects only for Px 5 and Px 10.
The pigiron, cotton prices and stock returns series all reject for 
each of the statistics at the 5% significance level.



www.manaraa.com

-66-

The estimated symmetric-bicovariance function for the ARMA(6 ,6 ) 
sunspot and ARMA(3,3) lynx residuals appear in Figure 1 and 2. 
Priestley (1984) reported that these ARMA representations give the 
lowest A1C values within a wide class of models considered. The time 
reversibility of sunspot series shows up in the first two lags. There 
is no evidence of time irreversibility in the lynx data in Figure 2.
It may be the case that one must go to a higher version of j(k), i+j 
>3, in order to detect the time irreversibility in this series, or 
simply that the process of taking residuals from an ARMA(3,3) model 
lowered the power of out test. The reader should note that the 
confidence intervals are calculated as marginal intervals for each k; 
they are not joint, or simultaneous, confidence intervals for the 
whole sequence of y2 x(k) , k - 1  n.

The estimated symmetric-bicovariance for the residuals of three 
closely watched business cycle indicators, the quarterly growth rate 
in nominal GNP, the monthly aggregate unemployment rate, and the 
monthly manufacturing sector capacity utilization rate, appear in 
Figures 3 to 5. Several spikes appear outside the confidence 
intervals for all three series. There thus is evidence of Type 1 time 
irreversibility in all three series. To the extent that these 
variables are major business cycle indicators, these results suggest 
that the business cycle is indeed asymmetric.
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A plot of the smoothed sample symmetric-bicovariance function for 
the MA(3) residuals of the log first differences of this series is 
presented in Figure 6 . Most of the evidence for Type 1 time 
irreversibility appears to taper off after 1 2  months.

The estimated symmetric-bicovariance function for the two 
financial time series, the stock returns data and spot cotton prices, 
are plotted in Figures 7 and 8 . There is strong evidence of Type 1 
time irreversibility in both series. In the stock returns data, the 
evidence is concentrated in the first thirty weeks. Rejection of time 
reversibility is found at almost all lags up to fifty-five for the 
spot cotton prices.
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7. Conclusions and Suggestions for Future Work

I have introduced a time domain test of time reversibility, the 
empirical symmetric-bicovariance function. The test can be used to 
provide a diagnostic check on the adequacy of the Frisch-type approach 
to modelling macroeconomic fluctuations. Several key business cycle 
indicators have been shown to be irreversible. This then implies that 
business cycle movements are asymmetric and, to the extent that these 
irreversibilities are important, both calls into question conventional 
time series techniques used in applied macroeconomics and suggests the 
need for macroeconomic theorists to develop state-dependent and regime 
switching models. Since it is known that all Gaussian ARMA processes 
are time reversible, it would be inappropriate to model these and 
other time irreversible series as Gaussian ARMA.

Under the null hypothesis the mean of the test statistic was 
shown to be equal to. zero. For the independently and identically 
distributed case an exact small sample expression for the variance was 
derived. In this case the statistic was shown to be asymptotically 
distributed normal. An approximate expression for the variance in the 
ARMA case was obtained and this was shown to be large relative to the 
independently and identically distributed case. This then motivated 
the transformation to ARMA residuals in order to reduce the variance 
of the test statistic. Assuming the model has been correctly
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identified, the sampling distribution for the independently and 
identically distributed case can then be applied, as a useful 
approximation for large sample size; this is justified by the 
consistency of the estimates of the model's parameters.

The null hypothesis using the 72 >1(k) statistic was restricted to 
joint probability distributions for which the first six moments are 
finite. Also, I restricted attention for practical reasons to y2 x(k) 
and did in general look at 7i(j(k) for arbitrary (i,j). Thus, my 
results are conservative in that y2 x(k) may indicate acceptance, but 
Ti,j(k) for (i,j) h (2,1) may not. As noted above, this may indeed be 
the case for the Canadain lynx series. In future work I plan to test 
for time irreversibility with a more generalized version of yL j(k).

I studied the small sample properties of the estimated symmetric- 
bicovariance function in Monte Carlo simulations. For several 
independently and identically distributed cases, convergence to the 
asymptotic distribution occurred by sample size 100. For AR(1) 
residuals, the estimated sizes were approximately double the nominal 
size at sample size 100. By sample size 250, the estimated sizes were 
just slightly greater than the nominal size. Convergence to the 
asymptotic normal distribution occurred by sample size 500. I showed 
that these rates of convergence compared very favorably to rates of 
convergence for both the BDS test and Hinich's linearity test. This 
was especially true for the BDS test.
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Monte Carlo evidence was presented which suggested that the 
72 >1(k) values were uncorrelated across k. Given the asymptotic 
normality of the 72 1 (k) values, this then motivated a portmanteau 
version of the test statistic. The distributions of the portmanteau 
statistics, chi-square with the appropriate degrees of freedom, were 
confirmed under the null hypothesis via Monte Carlo simulations. This 
then allows joint tests of significance to be carried out.

Through Monte Carlo simulations I estimated the power of both 
72 1 (k) and the portmanteau statistics against two classes of 
alternatives: BL(0,0,1,1) bilinear models and TAR(l) threshold
autoregressive models. The pattern of time irreversibility, as 
revealed by the estimated symmetric-bicovariance function, was seen to 
vary across these classes of models. More specifically, the generic 
pattern for TAR(l) models is very high power at lag k - 1 but 
estimated probability of rejection at the nominal level at all other 
lags. For most of the BL(0,0,1,1) models considered, the generic 
pattern was high power at both lag k - 1 and k - 2 but exponentially 
declining power as the k lag increased past k - 2 .

This then offers a simple diagnostic which can be used for 
identification of these time series models. By characterizing the 
time irreversibility through the estimated symmetric-bicovariance 
function, systematic patterns are revealed which assist the time 
series analyst in carrying out Box-Jenkins-like identification. This,
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I believe, represents an advance over the BDS and Hinich tests. As 1 
stressed above, while those tests may be useful in rejecting the 
particular null hypothesis, results obtained do not serve as a direct 
guide to specification of an appropriate time series model.

For the TAR(l) models, the estimated power at lag k - 1 is 
greater than the estimated power of the portmanteau statistics. Given 
the low estimated power at all lags other than k - 1 , this is not a 
surprising. For the BL(0,0,1,1) models, the portmanteau statistics 
generally are more powerful than yz x(k) at any particular k lag by 
sample size 250.

The estimated power of the time irreversibility test statistics 
compared well when matched up against the BDS test and the Hinich 
test. For a TAR(l) alternative, y2 j(k) at lag k - 1 was shown to be 
generally more powerful than the BDS statistic at various values of 
the scaling parameter. For a different TAR(l) alternative, yz x(k) at 
lag k - 1 was shown to have much greater estimated power than Hinich's 
test. However, Hinich's test was more powerful against a BL(0,0,1,1) 
alternative.

In the applications chapter I produced statistical evidence that 
the famous sunspot series is indeed time irreversible as are some 
macroeconomic and financial time series. The evidence of 
irreversibility suggests that policy decisions should take such 
factors into account and I have indicated the lag over which such
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irreversibilities are important. The fact that stock returns are time 
irreversible should prove of interest to researchers in finance who 
are interested in documenting time dependence in stock returns.

Two important lines of work lie ahead. First, I need to produce 
a taxonomy of mappings from various patterns in the estimated 
symmetric-bicovariance function to particular time series models which 
produce those patterns. As noted above, the power simulations already 
done suggest some representative patterns for TAR(l) and BL(0,0,1,1) 
models. One strategy to follow is to start with a simple Volterra 
expansion and calculated the symmetric bicovariance function. Second, 
work needs to be done to relate the notion of time irreversibility 
more directly to the current stock of macroeconomic theoretical 
models.
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Appendix: Variance of Test Statistic in the MA(2^ Case
Suppose (X,.) is an MA(2) process, with moving average parameters 

bj and b2. Then, an exact expression for the variance of y2 x(k), for 
k £ 5, is:

2(T-k)/(T-k) 2 {f?2(6b2 + 6b\ + 6b2 + 18b̂ b2 + b\b2 + 6b2 +
6b2b2) + m2M* ( 1  + b2 + b\ + b\ + b2 + b\b2 +
b\ + b &  + b62)) +

4(T-k-l)/(T-k) 2 {/i2/î (-b31+ b3b2 - b3b2 + b3̂  + fi\(-b1 - 
b\ - b5x + b1b2 + 5b3b2 + b̂ > 2 - 2b ̂  - 
5b\b2 + 2bxb2 + b3jb3 - b ^  + b̂ b3)) +

4(T-k-2)/(T-k) 2 {/i2/i4 (-b3) + /?2(-b2 - 2b2b2 - b\b2 - b3 - 
2b2b3 - b52)) +

2(T-2k-2)/(T-k) 2 {/i3 (b2 + 2b2b2 + b\b2 + 2b2 + 2b̂ b32 + b2)) +

2(T-2k-l)/(T-k) 2 {4(bx + 2b3 + b\ - bxb2 - 2 b\ - b̂ b2 + 2b1b2 +
2b3b2 - 2b1b3 - 2b3b3 + bxb* - b^)) +

2(T-2k)/(T-k)z {/i3(-l - 3b2 - 3b\ - b“ - 3b2 - 6b2b2 - 3b\b2 -
3b2 - 3b2b2 - b2)) +
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2(T-2k+l)/(T-k) 2 {/i32(bx + 2b3 + b\ - bxb2 - 2b3b2 - b̂ b2 +
2b3xbz - 2bxb3 - 2b3b3 + bxb*2 - bxb52)) +

2(T-2k+2)/(T-k)z {fobz + 2bzb2 + b\b2 + 2b32 + 2b̂ b32 + b52))

2 bxbz +
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Table 1

SQme Summary Statistics on the Empirical Sampling Distribution of 
7 2,i<D: (Xt) Independent and Identically Distributed N(0,1)

Kolmogorov-Smirnov 
D Statistic for

* Measured the Normal Theoretical Estimated
T Kurtosis Distribution 2 Variance 3 Variance
50 4.250 0.0415 0.287 0.281

1 0 0 4.159 0.0271 0 . 2 0 2 0.205
150 3.606 0.0205 0.164 0.168
2 0 0 3.335 0.0149 0.142 0.140
250 3.352 0.0176 0.127 0.127
300 3.370 0.0173 0.116 0.118
350 3.407 0.0195 0.107 0 . 1 1 0
400 3.193 0.0139 0 . 1 0 0 0 . 1 0 0
450 3.238 0.0137 0.094 0.097
500 3.025 0.0181 0.090 0.090

:T - sample size.

zFor a sample size of 1 0 0 0 , the acceptance limits for the
Kolmogorov-Smirnov Test of Goodness of Fit are:

Significance Level
.20 .15 .10 .05 .01

0.0338 0.0360 0.0386 0.0430 0.0515
Large values reject. See the asymptotic formula given in 
Lindgren (1976, p.580).

3As derived from equation (4.12).
These results are based on Monte Carlo simulations with 1000 
iterations for each sample size. In each iteration, a 
series of length T of independently and identically 
variables, distributed normal with mean zero and unit 
variance, was generated and 7 2 x(l) was calculated.
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Table 2

Estimated Sizes of y2 1(k):
{Xt) Independently and Identically'Distributed N(0,1)
T - 100 1 T - 250 T - 500 T - 1000 a Level

k - 1 3 .048 .048 .049 .047 .05
k - 2 .051 .053 .051 .049 .05
k - 3 .049 .046 .052 .047 .05
k - 4 .052 .058 .056 .048 .05
k - 5 .058 .051 .043 .044 .05
k - 6 .048 .040 .059 .045 .05
k - 7 .049 .048 .051 .044 .05
k - 8 .047 .045 .049 .044 .05
k - 9 .048 .048 .046 .044 .05
k - 1 0 .044 .055 .050 .046 .05

XT - Sample size of (Xt).
2a - Probability of rejection under the null hypothesis of time 

reversible.
3k - lag at which y2 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, a 
series of length T of independently and identically N(0,1) 
random variables was generated, 7 , t(k) was calculated and a 
rejection was counted if the absolute value of y2 x(k) was 
greater than twice the standard deviation of y2 t(k) as given 
in Equation (4.12).
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Table 3
Estimated Sizes of 72 x(k):

(Xt) Independently and Identically Distributed *2 (1)

T - 100 1 T - 250 T - 500 T - 1000 a Level
k - 1 3 .052 .053 .046 .045 .05
k - 2 .048 .050 .050 .052 .05
k - 3 .045 .049 .047 .047 .05
k - 4 .047 .049 .047 .050 .05
k - 5 .046 .048 .046 .047 .05
k - 6 .049 .051 .049 .052 .05
k - 7 .052 .049 .046 .051 .05

001X .049 .049 .047 .050 .05
k - 9 .052 .047 .048 .052 .05
k - 1 0 .047 .052 .046 .046 .05

XT - Sample size of {Xfc>.
2a - Probability of rejection under the null hypothesis of time

reversible.
3k - lag at which y2 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, a 
series of length T of independently and identically *2 (1)
random variables was generated, y2 x(k) was calculated and
a rejection was counted if the absolute value.of y, x(k) was 
greater than twice the standard deviation of 72 ĵ k) as given 
in Equation (4.12).



www.manaraa.com

-78-
Table 4

Estimated Sizes of 72 x(k):
{Xt} Independently and Identically Distributed *2 (5)

T - 100 1 T - 250 T - 500 T - 1000 a Level
k - 1 3 .049 .045 .046 .046 .05
k - 2 .048 .046 .046 .044 .05
k - 3 .046 .045 .046 .049 .05
k - 4 .044 .045 .046 .045 .05
k - 5 .047 .044 .046 .044 .05
k - 6 .048 .047 .045 .044 .05
k - 7 .046 .044 .046 .046 .05
k - 8 .047 .047 .046 .045 .05
k - 9 .047 .046 .042 .043 .05
k - 1 0 .046 .047 .045 .043 .05

jT - Sample size of {Xt) .
2a - Probability of rejection under the null hypothesis of time

reversible.
3 *k - lag at which y2 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, a 
series of length T of independently and identically xZ(5)
random variables was generated, y2 was calculated and
a rejection was counted if the absolute value.of 7, x(k) was 
greater than twice the standard deviation of 72 1(k)' as given 
in Equation (4.12).
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Estimated Sizes of y , x(k) :
(Xt> Independently and Identically Distributed Standard Exponential

T - 100 1 T - 250 T - 500 T - 1000 a Level
k - 1 3 .050 .042 .047 .044 .05
k - 2 .047 .047 .046 .046 .05
k - 3 .045 .045 .046 .044 .05
k - 4 .047 .046 .044 .046 .05
k - 5 .045 .046 .047 .043 .05
k - 6 .044 .044 .046 .042 .05
k - 7 .042 .044 .048 .049 .05
k - 8 .044 .042 .044 .043 .05
k - 9 .042 .043 .046 .042 .05
k - 1 0 .046 .047 .046 .049 .05

jT - Sample size of (Xt} .
za - Probability of rejection under the null hypothesis of time 

reversible.
3k - lag at which y2 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, a 
series of length T of independently and identically standard 
exponential random variables was generated, y2 ,(k) was 
calculated and a rejection was counted if the absolute value 
pf 7, :(k) was greater than twice the standard deviation of 
y2 jOc) as given in Equation (4.12).
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Probability that Number of Rejections is
Greater Than or Equal to k, k - 1,2,...,10:

{Xt} Independently and Identically Distributed N(0,1)

T - 100 1 T - 250 T - 500 T - 1000
Theoretical
Probabilitv

k - 1 3 .407 .384 .374 .373 .401

k - 2 .094 .073 .074 .074 .086

k - 3 .014 . 0 1 1 .008 . 0 1 0 . 0 1 2

k - 4 . 0 0 1 . 0 0 2 . 0 0 1 . 0 0 1 . 0 0 1

k - 5 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

XT - Sample size of (Xt).
Probability of rejecting k or more times in a sequence of Bernoulli 
trials in which the probablity of success is .05.

3k - lag at which yz 1(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, a 
series of length T of independently and identically N(0,1) 
random variables was generated, 7 2 x(k) was calculated and 
a rejection was counted if the absolute value,.of 7, a(k) was 
greater than twice the standard deviation of 72 1(k)' as given 
in Equation (4.12).
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Probability that Number of Rejections is
Greater Than or Equal to k, k - 1,2,...,10:

{Xfc} Independently and Identically Distributed *2(1)

T - 100 1 T - 250 T - 500 T - 1000
Theoretical
Probabilitv

k - l 3 .377 .377 .372 .369 .401

k - 2 .080 .070 .072 .070 .086

k - 3 . 0 1 1 .009 .009 . 0 1 0 . 0 1 2

k - 4 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1

k - 5 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

XT - Sample size of {Xfc} .
Probability of rejecting k or more times in a sequence of Bernoulli 
trials in which the probablity of success is .05.

3 *k - lag at which y2 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 Iterations for each sample size. In each iteration, a 
series of length T of independently and identically *2 (1) 
random variables was generated, y2 x(5) was calculated and 
a rejection was counted if the absolute value.of y, x(k) was 
greater than twice the standard deviation of 72 1(k)‘ as given 
in Equation (4.12).
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Probability that Number of Rejections is
Greater Than or Equal to k, k - 1,2,...,10:

{Xt} Independently and Identically Distributed *2(5)

T - 100 1 T - 250 T - 500 T - 1000
Theoretical
Probabilitv

k - l 3 .385 .399 .389 .393 .401

k - 2 .089 .085 .074 .087 .086

k - 3 . 0 1 2 . 0 1 2 .009 . 0 1 1 . 0 1 2

k - 4 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1

k - 5 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

jT - Sample size of {Xfc}.
Probability of rejecting k or more times in a sequence of Bernoulli 
trials in which the probablity of success is .05.

3k - lag at which y2 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, a 
series of length T of independently and identically *2 (1) 
random variables was generated, y2 ,(k) was calculated and 
a rejection was counted if the absolute value.of 7, x(k) was 
greater than twice the standard deviation of y2 1(k)‘ as given 
in Equation (4.12).
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Table 9

Probability that Number of Rejections is
Greater Than or Equal to k, k - 1,2.....10:

{Xt) Independently and Identically Distributed Standard Exponential

T — 100 1 T - 250 T - 500 T - 1000
Theoretical
Probability

k - l 3 .364 .363 .373 .366 .401

k - 2 .075 .074 .075 .072 .086

k - 3 . 0 1 0 .008 . 0 1 1 .008 . 0 1 2

k - 4 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1

k - 5 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

jT - Sample size of (Xt).
Probability of rejecting k or more times in a sequence of Bernoulli 
trials in which the probablity of success is .05.

3k - lag at which y2 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, a 
series of length T of independently and identically standard 
exponential random variables was generated, y2 ,(k) was 
calculated and a rejection was counted if the absolute value 
pf 7?(1(k) was greater than twice the standard deviation of 
7 2 ĵ k) as given in Equation (4.12).
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Table 10

Estimated Sizes of y2 x(k) and Probability that
Number of Rejections is’Greater Than or Equal to k:

{Xt) Gaussian AR(1) Residuals (AR(1) Coefficient - 0.9)

Estimated Sizes, a Level1 — 0.05

T-1002 T-250 T-500 T-100 T-250 T-500
Theor
Prob.

k M 1 * . 1 0 2 .056 .050 .684 .462 .412 .401
k - 2 .104 .059 .047 .312 .119 .094 .086
k - 3 . 1 1 2 .057 .052 .096 .019 .013 . 0 1 2

k - 4 . 1 1 1 .063 .049 . 0 2 0 . 0 0 2 . 0 0 1 . 0 0 1

k - 5 .113 .060 .054 . 0 2 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 6 . 1 2 1 .059 .058 .004 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 7 . 1 1 2 .057 .056 . 0 0 1 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 8 .116 .061 .049 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k mm 9 .115 .062 .053 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 1 0 . 1 1 1 .063 .052 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

Prob (Rejecting k or More Times)

xa - Probability of rejection under the null hypothesis of time 
reversible.

ZT - Sample size of (Xt) .
Probability of rejecting k or more times in a sequence of 1 0  
Bernoulli trials in which the probablity of success is .05.

*k - lag at which 7 2 x(k) was evaluated
These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, 
an AR(1) series of length T with N(0,1) innovations and 
AR(1) coefficient equal to.0.9 was generated, an AR(1) model 
was fitted to the series, y2 x(k) was calculated on the 
residuals and a rejection was counted if the absolute value 
pf 7 2ti(k) was greater than twice the standard deviation of 
72 jOO as given in Equation (4.12).
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Table 11

Estimated Sizes of 72fl(k) and Probability that
Number of Rejections is'Greater Than oik Equal to k:

{Xfc} Gaussian AR(1) Residuals (AR(1) Coefficient — 0.8)

Estimated Sizes, a Level1 — 0.05

T-1002 T-250 T-500 T-100 T-250 T-500
Theor
Prob.

k - 1 '* . 1 0 2 .055 .054 .695 .470 .418 .401
k - 2 . 1 1 2 .059 .051 .311 .125 .096 .086
k - 3 .114 .060 .054 .099 . 0 2 1 .014 . 0 1 2

k - 4 .109 .063 .053 . 0 2 2 . 0 0 2 . 0 0 2 . 0 0 1

k - 5 . 1 1 1 .064 .051 .004 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 6 . 1 1 1 .064 .059 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 7 .114 .062 .051 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 8 .116 .064 .053 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 9 .115 .063 .052 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k — 1 0 . 1 2 1 .064 .053 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

Prob (Rejecting h or More Times)

- Probability of rejection under the null hypothesis of time 
reversible.

T - Sample size of (Xt) .
Probability of rejecting k or more times in a sequence of 1 0  
Bernoulli trials in which the probablity of success is .05.
*k - lag at which y2 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, 
an AR(1) series of length T with N(0,1) innovations and 
AR(1) coefficient equal to.0.8 was generated, an AR(1) model 
was fitted to the series, y2 j(k) was calculated on the 
residuals and a rejection was counted if the absolute value 
pf 7o>1(k) was greater than twice the standard deviation of 
72 jOc) as given in Equation (4.12).
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Estimated Sizes of 721(k) and Probability that
Number of Rejections is’Greater Than or Equal to k:

(Xt) Gaussian AR(1) Residuals (AR(1) Coefficient - 0.7)

Estimated Sizes, a Level1 - 0.05

T-1002 T-250 T-500 T-100 T-250 T-500
Theor 
Prob.

k - l4 .105 .059 .052 .697 .469 .417 .401
k - 2 .108 .057 .055 .319 .123 .092 .086
k - 3 .117 .064 .052 . 1 0 0 .018 . 0 1 2 . 0 1 2

k - 4 .114 .063 .049 . 0 2 2 . 0 0 2 . 0 0 2 . 0 0 1

k mm 5 .115 .063 .047 .005 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 6 .113 .062 .052 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 7 .116 .063 .053 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 8 .118 .061 .055 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 9 .119 .062 .052 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k mm 1 0 .117 .059 .050 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

Prob (Rejecting k or More Times)

- Probability of rejection under the null hypothesis of time 
reversible.

T - Sample size of (Xt).
Probability of rejecting k or more times in a sequence of 1 0  
Bernoulli trials in which the probablity of success is .05.
4k - lag at which 72 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, 
an AR(1) series of length T with N(0,1) innovations and 
AR(1) coefficient equal to,.0.7 was generated, an AR(1) model 
was fitted to the series, y2 x(k) was calculated on the 
resj.duals and a rejection was counted if the absolute value 
pf 7? x(k) was greater than twice the standard deviation of 
7 2 j(k) as given in Equation (4.12).
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Table 13
Estimated Sizes of 72>1(k) and Probability that

Number of Rejections is’Greater Than or Equal to k:
{Xt} Gaussian AR(1) Residuals (AR(1) Coefficient - 0.6)

Estimated Sizes, a Level1 =0.05

T-1002 T-250 T-500
k - 1 * .103 .058 .050
k - 2 .107 .062 .051
k - 3 .116 .064 .053
k - 4 .113 .063 .055
k - 5 .115 .062 .056
k - 6 . 1 1 1 .064 .053
k - 7 . 1 1 1 .064 .054

001 .114 .059 .052
k - 9 . 1 1 2 .062 .047
k - 1 0 .117 .064 .051

Prob (Rejecting k or More Times)

T-100 T-250 T-500
Theor
Prob.

. 6 8 8 .472 .416 .401

.310 .127 .097 .086

.097 . 0 2 0 .014 . 0 1 2

. 0 2 1 . 0 0 2 . 0 0 1 . 0 0 1

.003 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

- Probability of rejection under the null hypothesis of time 
reversible.

2T - Sample size of (Xt).
3Probability of rejecting k or more times in a sequence of 1 0  
Bernoulli trials in which the probablity of success is .05.
*k - lag at which y2 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, 
an AR(1) series of length T with N(0,1) innovations and 
AR(1) coefficient equal to,0.6 was generated, an AR(1) model 
was fitted to the series, 7 2 x(k) was calculated on the 
resjduals and a rejection was counted if the absolute value 
pf 7 , i (k) was greater than twice the standard deviation of 
7 2 ,i(k) as given in Equation (4.12).



www.manaraa.com

-88-
Table 14

Estimated Sizes of y2 l (k) and Probability that
Number of Rejections is’Greater Than or Equal to k:

(Xt) Gaussian AR(1) Residuals (AR(1) Coefficient - 0.5)

Estimated Sizes, a Level1 — 0.05

T-1002 T-250 T-500 T-100 T-250 T-500
Theor
Prob.

k - 1 * .107 .060 .052 .693 .467 .407 .401
k - 2 .117 .065 .051 .319 .126 .089 .086
k 3 .114 .059 .053 . 1 0 2 .023 .013 . 0 1 2

k M 4 .119 .060 .050 . 0 2 0 .003 . 0 0 2 . 0 0 1

k - 5 .115 .064 .051 .003 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 6 .117 .065 .051 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 7 . 1 1 0 .058 .051 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 8 . 1 1 2 .062 .050 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 9 .114 .066 .050 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 1 0 .114 .061 .053 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

Prob (Rejecting k or More Times)

xa - Probability of rejection under the null hypothesis of time 
reversible.

2T - Sample size of (Xt).
Probability of rejecting k or more times in a sequence of 10 
Bernoulli trials in which the probablity of success is .05.
*k - lag at which 72 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, 
an AR(1) series of length T with N(0,1) innovations and 
AR(1) coefficient equal to,0.5 was generated, an AR(1) model 
was fitted to the series,* 7 2 x(k) was calculated on the 
resj.duals and a rejection was counted if the absolute value 
pf 7oil(k) was greater than twice the standard deviation of 
72 jCk) as given in Equation (4.12).
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Table 15

Estimated Sizes of 72>1(k) and Probability that
Number of Rejections is’Greater Than or Equal to k:

{Xt} Gaussian AR(1) Residuals (AR(1) Coefficient — 0.4)

Estimated Sizes, a Level1 -0.05

T-1002 T-250 T-500 T-100 T-250 T-500
Theor
Prob.

k - l4 . 1 1 0 .060 .049 .690 .476 .414 .401
k - 2 .118 .062 .052 .314 .131 .092 .086
k - 3 .114 .065 .055 . 1 0 2 . 0 2 2 . 0 1 2 . 0 1 2

k - 4 . 1 1 1 .062 .052 .023 . 0 0 2 . 0 0 2 . 0 0 1

k - 5 .113 .067 .053 .004 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 6 . 1 1 1 .064 .049 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 7 . 1 1 .061 .055 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 8 .113 .066 .050 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k m 9 .113 .063 .050 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k mm 1 0 . 1 1 2 .062 .055 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

Prob (Rejecting k or More Times)

xa - Probability of rejection under the null hypothesis of time 
reversible.

ZT - Sample size of (Xt).
Probability of rejecting k or more times in a sequence of 1 0  
Bernoulli trials in which the probablity of success is .05.
*k - lag at which 72 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, 
an AR(1) series of length T with N(0,1) innovations and 
AR(1) coefficient equal to„0.4 was generated, an AR(1) model 
was fitted to the series, 7 2 x(k) was calculated on the 
residuals and a rejection was counted if the absolute value 
pf 72ii(k) was greater than twice the standard deviation of 
7 2 tl(k) as given in Equation (4.12).
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Table 16

Estimated Sizes of 721(k) and Probability that
Number of Rejections is’Greater Than or Equal to k:

(Xt) Gaussian AR(1) Residuals (AR(1) Coefficient - 0.3)

Estimated Sizes, a Level1 — 0.05

T-1002 T-250 T-500 T-100 T-250 T-500
Theor
Prob.

k - 1 A .107 .058 .053 .699 .471 .409 .401
k - 2 .114 .060 .055 .321 .128 .097 .086
k - 3 . 1 2 1 .062 .055 .097 . 0 2 1 .014 . 0 1 2

k mm 4 .115 .061 .050 . 0 2 2 . 0 0 2 . 0 0 1 . 0 0 1

k - 5 .119 .066 .052 .004 0.000 0.000 0.000
k - 6 .111 .059 .055 0.000 0.000 0.000 0.000
k - 7 .111 .062 .051 0.000 0.000 0.000 0.000
k mm 8 .116 .066 .051 0.000 0.000 0.000 0.000
k - 9 .113 .063 .049 0.000 0.000 0.000 0.000
k mm 1 0 .116 .066 .053 0.000 0.000 0.000 0.000

Prob (Rejecting k or More Times)

- Probability of rejection under the null hypothesis of time 
reversible.

2T - Sample size of (Xt).
Probability of rejecting k or more times in a sequence of 1 0  
Bernoulli trials in which the probablity of success is .05.

*k - lag at which 7 2 x(k) was evaluated
These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, 
an AR(1) series of length T with N(0,1) innovations and 
AR(1) coefficient equal to,0.3 was generated, an AR(1) model 
was fitted to the series, y2 x(k) was calculated on the 
residuals and a rejection was counted if the absolute value 
pf 7» j(k) was greater than twice the standard deviation of 
72tl(k) as given in Equation (4.12).
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Table 17

Estimated Sizes of y2 x(k) and Probability that
Number of Rejections is’Greater Than or Equal to k:

{Xt} Gaussian AR(1) Residuals (AR(1) Coefficient - 0.2)

Estimated Sizes, a Level1 - 0.05

T-1002 T-250 T-500 T-100 T-250 T-500
Theor
Prob.

k - 1 * . 1 1 2 .064 .050 .692 .471 .418 .401
k - 2 . 1 1 0 .062 .056 .316 .123 .094 .086
k - 3 . 1 1 1 .062 .055 .094 . 0 2 0 .014 . 0 1 2

k - 4 . 1 1 2 .060 .051 . 0 2 0 .003 . 0 0 1 . 0 0 1

k - 5 .119 .061 .053 .004 0 . 0 0 1 0 . 0 0 0 0 . 0 0 0

k - 6 .115 .061 .054 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 7 .114 .063 .052 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 8 .113 .061 .051 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 9 . 1 1 1 .065 .051 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k _ 1 0 .109 .059 .055 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

Prob (Rejecting k or More Times)

- Probability of rejection under the null hypothesis of time 
reversible.

ZT - Sample size of (Xt) .
Probability of rejecting k or more times in a sequence of 1 0  
Bernoulli trials in which the probablity of success is .05.
*k - lag at which y2 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, 
an AR(1) series of length T with N(0,1) innovations and 
AR(1) coefficient equal to.0.2 was generated, an AR(1) model 
was fitted to the series, y2 x(k) was calculated on the 
residuals and a rejection was counted if the absolute value 
pf 7*tl(k) was greater than twice the standard deviation of 
72 x(k) as given in Equation (4.12).
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Table 18

Estimated Sizes of 721(k) an<* Probability that
Number of Rejections is’Greater Than or Equal to k:

{Xt} Gaussian AR(1) Residuals (AR(1) Coefficient - 0.1)

Estimated Sizes, a Level1 - 0.05 Prob (Rejecting k or Hore Times)

T-1 0 0 2 T-250 T-500 T-100 T-250 T-500
Theor. 3
Prob.

k - 1 * . 1 1 0 .062 .049 .696 .469 .418 .401
k - 2 .117 .068 .051 .326 .132 .094 .086
k - 3 .116 .061 .054 . 1 0 0 .023 . 0 1 1 . 0 1 2

k - 4 .118 .064 051 .023 0 . 0 0 0 . 0 0 1 . 0 0 1

k - 5 .118 .060 055 .003 0 . 0 0 1 0 . 0 0 0 0 . 0 0 0

k - 6 . 1 1 1 .059 053 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k r I .116 .061 052 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 8 .116 .063 053 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 9 .109 .063 055 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 1 0 .116 .065 051 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

xa - Probability of rejection under the null hypothesis of time 
reversible.
2T - Sample size of {Xt).
Probability of rejecting k or more times in a sequence of 1 0  
Bernoulli trials in which the probablity of success is .05.
*k - lag at which 7 2il(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, 
an AR(1) series of length T with N(0,1) innovations and 
AR(1) coefficient equal to.0.1 was generated, an AR(1) model 
was fitted to the series, y2 j(k) was calculated on the 
resj-duals and a rejection was counted if the absolute value 
pf 72>i(k) was greater than twice the standard deviation of 
72 1 (k) as given in Equation (4.12).
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Table 19

Estimated Sizes of 72 , (k):
(Xt) Residuals from AR(1) with x  (1) Innovations

(AR(1) Coefficient - 0.9)

T-1001 T-250 T-500
I3 .166 .083 .080
2 .141 .088 .068
3 .130 .083 .055
4 . 1 2 1 .081 .067
5 .131 .065 .054
6 .113 .061 .071

7 .127 .069 .072
8 .106 .077 .049
9 . 1 0 1 .073 .054
1 0 .129 .062 .069

T-1000 T-5000 a Level
.080 .054 .05
.068 .051 .05
.061 .050 .05
.061 .062 .05
.065 .047 .05
.046 .051 .05
.056 .058 .05
.048 .043 .05
.049 .044 .05
.051 .053 .05

XT - Sample size of (Xt).
a - Probability of rejection under the null hypothesis of time

reversible.
3k - lag at which y2 x(k) was evaluated

These results are based on Monte Carlo simulations with
10000 iterations for each sample size. In each iteration,
an AR(1) series of length T with x2 (l) innovations and AR(1) 
coefficient equal to 0k9 was generated, an AR(1) model was 
fitted to the series, y2 x(k) was calculated on the 
residuals and a rejection was counted if the absolute value 
pf 7, i(k) was greater than twice the standard deviation of 
72 x(K) as given in Equation (4.12).
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Table 20

Estimated Probability that Number of Rejections is Greater Than
or Equal to k: (Xfc) Residuals from AR(1) with x2(l) Innovations

(AR(1) Coefficient - 0.9)

k - l3

k - 2  

k - 3 

k - 4 

k - 5

T-1001 T-250 T-500 T-1000 T—5000
Theoretical
Probability

.691 .523 .462 .432 .413 .401

.350 .173 .138 . 1 2 2 .090 .086

.142 .036 .032 .027 .018 . 0 1 2

.056 .009 .006 .004 . 0 0 2 . 0 0 1

.008 . 0 0 1 . 0 0 1 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

jT - Sample size of (Xt)
2

trials in which the probablity of success is .05.
3

Probability of rejecting k or more times in a sequence of Bernoulli 
trials in which the probablity of suc<
k - lag at which 72 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, 
an AR(1) series of length T with *2 (1) innovations and AR(1) 
coefficient equal to 0k9 was generated, an AR(1) model was 
fitted to the series, y2 t(k) was calculated on the 
residuals and a rejection was counted if the absolute value 
pf 7, x(k) was greater than twice the standard deviation of 
72 jOc) as given in Equation (4.12).
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Table 21

Estimated Sizes of 72 j(k):
{Xt} Residuals from AR(1) with x (5) Innovations

(AR(1) Coefficient - 0.9)

T-1001 T—250 T—500 T—1000 T-5000 a Leve
k - l3 .129 .055 .062 .062 .043 .05

CM1 .108 .061 .072 .050 .056 .05
k - 3 .115 .064 .050 .051 .044 .05
k - 4 . 1 2 2 .070 .062 .048 .050 .05
k - 5 .109 .066 .063 .065 .043 .05
k - 6 .109 .081 .042 .052 .044 .05
k - 7 .129 .062 .045 .061 .035 .05
k - 8 .133 .073 .042 .053 .055 .05
k - 9 .127 .043 .064 .058 .041 .05
k - 1 0 . 1 2 1 .082 .054 .050 .050 .05

XT - Sample size of (Xt).
za - Probability of rejection under the null hypothesis of time 

reversible.
3k - lag at which y2 x(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, 
an AR(1) series of length T with *2 (5) innovations and AR(1) 
coefficient equal to 0K9 was generated, an AR(1) model was 
fitted to the series, y2 1(k) was calculated on the 
resj.duals and a rejection was counted if the absolute value 
gf 7ji(k) was greater than twice the standard deviation of 
yz i/k) as given in Equation (4.12).
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Table 22

Estimated Probability that Number of Rejections is Greater Than _ . . -fc] 'or Equal to k: (Xt) Residuals from AR(1) with *2 (5) Innovations
(AR(1) Coefficient - 0.9)

T-1001 T—250 T-500 T-1000 T—5000
Theoretical
Probability^

k - l3 .695 .507 .435 .434 .379 .401

k - 2 .349 .130 .099 .099 .064 .086

k - 3 .113 .017 .018 .015 .007 . 0 1 2

k - 4 .032 .003 .003 . 0 0 2 . 0 0 1 . 0 0 1

k - 5 . 0 1 0  0 . 0 0 0 . 0 0 1 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 6 .003 0.000 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

iT “ Sample size of (Xt).
Probability of rejecting k or more times in a sequence of 1 0  
Bernoulli trials in which the probablity of success is .05.
3k - lag at which 72 1 (k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, 
an AR(1) series of length T with x2 (5) innovations and AR(1) 
coefficient equal to 0K9 was generated, an AR(1) model was 
fitted to the series, y2 :(k) was calculated on the 
residuals and a rejection was counted if the absolute value 
gf 7, :(k) was greater than twice the standard deviation of 
72 ̂ k') as given in Equation (4.12).
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Table 23

Estimated Sizes of y2 x(k): {X,.} Residuals from AR(1) with 
Standard Exponential Innovations (AR(1) Coefficient =0.9)

T-1001 T-250 T-500 T-1000 T-5000 a Levc
k = l3 .130 .076 .066 .061 .051 .05

CM1 .129 .075 .068 .058 .054 .05
k = 3 .117 .072 .062 .056 .054 .05
k - 4 . 1 2 1 .072 .059 .057 .055 .05
k = 5 . 1 2 0 .067 .060 .059 .052 .05
k = 6 .116 .069 .060 .055 .045 .05
k = 7 . 1 1 1 .067 .059 .051 .048 .05
k - 8 .119 .069 .055 .052 .053 .05
k - 9 . 1 2 1 .062 .057 .054 .049 .05
k - 1 0 . 1 1 2 .066 .056 .052 .047 .05

XT = Sample size of (Xt) .
za - Probability of rejection under the null hypothesis of time 

reversible.
3k - lag at which y2 i(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, 
an AR(1) series of length T with standard exponential 
innovations and AR(1) coefficient equal to 0.9 was 
generated, an AR(1) model was fitted to the series, y2 x(k) 
was calculated on the residuals and a rejection was counted 
if the absolute value pf 7? 1(k) was greater than twice the 
standard deviation of 72(1(k) as given in Equation (4.12).
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Table 24

Estimated Probability that Number of Rejections is Greater Than 
or Equal to k: {Xt} Residuals from AR(1) with Standard 

Exponential Innovations (AR(1) Coefficient - 0.9)

T-1001 T—250 T-500 T-1000 T—5000
Theoretical
Probability^

k - l3 .691 .503 .458 .437 .410 .401

k - 2 .338 .150 . 1 2 0 .105 .093 .086

k - 3 .123 .034 . 0 2 1 .017 .013 . 0 1 2

k - 4 .035 .006 .003 . 0 0 2 . 0 0 1 . 0 0 1

k - 5 .008 . 0 0 1 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

k - 6 . 0 0 1 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

J  - Sample size of (Xt).
Probability of rejecting k or more times in a sequence of 1 0  
Bernoulli trials in which the probablity of success is .05.
3k - lag at which y2 j(k) was evaluated

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, 
an AR(1) series of length T with x (1) innovations and AR(1) 
coefficient equal to 0^9 was generated, an AR(1) model was 
fitted to the series, y2 x(k) was calculated on the 
residuals and a rejection was counted if the absolute value 
pf 7, x(k) was greater than twice the standard deviation of 
y2 jCk') as given in Equation (4.12).
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Table 25

Estimated Sizes of BDS Statistic:
{Xt} Independently and Identically Distributed N(0,1)

r/o 1

0.25 0.50 1.00 1.50 2.00 a Level2

D-2.T-1003 .574 .306 .145 .128 .163 .05

D-2.T—500 .256 .102 .068 .066 .074 .05

D-2.T-1000 .153 .070 .054 .049 .052 .05

D-5.T-500 .332 .070 .053 .058 .061 .05

D-5.T-1000 .206 .067 .054 .061 .061 .05

xr - Scaling Parameter 
a - Standard Deviation of the Series
2a - Probability of rejection under the null hypothesis of i.i.d.
3D - Embedding dimension and T - Sample size

The size of the BDS statistics based on Monte Carlo results
reported in Hsieh and LeBaron (1988), Table 1.
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Table 26

Estimated Sizes of BDS Statistic:
(Xt) Independently and Identically Distributed *2 (4)

x/o 1
0.25 0.50 1.00 1.50 2.00 a Level2

D-2.T-1003 .426 .196 .113 .109 .115 .05

D-2.T-500 .151 .069 .058 .059 .059 .05

D-2.T-1000 .101 .069 .069 .073 .062 .05

D-5.T-500 .522 .107 .057 .056 .058 .05

D-5.T-1000 .399 .088 .058 .056 .053 .05

1r - Scaling Parameter 
a - Standard Deviation of the Series
2a - Probability of rejection under the null hypothesis of i.i.d.
3D - Embedding dimension and T - Sample size

The size of the BDS statistics based on Monte Carlo results
reported in Hsieh and LeBaron (1988), Table 4.
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Table 27

Estimated Sizes of BDS Statistic:
{Xt} Gaussian AR(1) Residuals (AR(1) Coefficient — 0.5)

T/O 1

0.50 1.00 1.50 2.00 a Level2

D-2.T-1003 .311 .144 .124 .167 .05

D-2.T-500 .098 .069 .069 .077 .05

D-2.T-1000 .078 .062 .059 .064 .05

D-5.T-500 .249 .080 .077 .076 .05

D-5.T-1000 .127 .059 .057 .062 .05

xr - Scaling Parameter 
a - Standard Deviation of the Series
2a - Probability of rejection under the null hypothesis of i.i.d.
3D - Embedding dimension and T - Sample size

The size of the BDS statistics based on Monte Carlo results 
reported in Hsieh and LeBaron (1988), Table 13.
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Table 28

Estimated Sizes of Hinich Linearity Test:
{Xfc} Independently and Identically Distributed N(0,1)

80% Ouantile1 a Level2

M3- 12 .060 .05
T'1- 256

M - 17 .075 .05

M - 16 .052 .05
T - 512

M - 23 .050 .05

M - 23 .046 .05
T - 1024

M - 33 .057 .05

xSize of 80% Quantile Measure of {2|r(w1 ,w2) | }.
2a = Probability of rejection under the null hypothesis of linearity. 
3M = Smoothing constant.
*T - Sample size.

The size of the 80% quantile measures based on Monte Carlo 
results reported in Ashley, Patterson and Hinich (1986),
Table 2.
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Table 29

Empirical Distributions of Portmanteau Statistics: 
Kolmogorov-Smirnov Goodness of Fit D Statistics for *z(5) and *2 (10)

T-1001 T-250 T-500
Series

1.1.D. 
N(0,1)
1.1.D.X <D
1.1.D.
X (5)
1.1.D.
Standard
Exponential
Gaussian
AR(1)
Residuals

1,5 ■ 1,10 ■ 1.5 ■1,10 ■ 1.5 •1,10

.02422

.0231

.0230

.0227

.0112

.0302

.0250

.0268

.0223

.0203

.0090 .0131

.0143 .0173

.0142 .0135

.0237 .0154

.0074 .0134

.0073 .0099

.0088 .0079

.0069 .0107

.0080 .0088

.0076 .0094

*T - Sample size.
2For a sample size of 10000, the acceptance limits for the Kolmogorov- 
Smirnov Test of Goodness of Fit are:

Significance Level
.20 .15 .10 .05 .01

0.0107 0.0114 0.0122 0.0136 0.0163

3AR(1) coefficient = .9.
These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, a 
series of length T of the particular stochastic process was 
generated and the portmanteau statistics P. 5 and Px 10 were 
calculated. After the 10000 iterations, trie Kolmogorov- 
Smirnov one sample goodness of fit D statistics were 
calculated to test the null hypothesis that the distrbutions 
of Px 5 and Px 10 were, respectively, *2 (5) and x2 (10).
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Table 30

Estimated Power of y2 ^ k ) :
{Xt) MA(1) Residuals of a BL(0,0,1,1) rfodel at Sample Size 100

&
Pr(Reject) 
for k - 1

Pr(Reject) 
for k - 2

Pr(Reject) 
for k - 3

Pr (Reject) 
for k - 4

Pr(Reject) 
for k - 5

0.9 .428 .385 .152 .083 .053
0 . 8 .369 .351 .109 .061 .048
0.7 .359 .305 .080 .048 .034
0 . 6 .412 .231 .055 .042 .037
0.5 .539 .153 .048 7042 .039
0.4 .651 .094 .041 .043 .045
0.3 .611 .063 .047 .048 .046
0 . 2 .400 .054 .052 .047 .050
0 . 1 .150 .053 .053 .049 .050

Xt - ^■Xt.1-et.1 + et, et~N(0,1)
Probabilities based on Monte Carlo simulations with 10000 
iterations in which a BL(0,0,1,1) series was generated with 
100 observations, an MA(1) model was fitted to the 
series, y2 x(k) was calculated on the residuals /md a 
rejection was counted if the absolute value of y2 x(k) was 
greater than twice the standard deviation of y2 xCk) as given 
in Equation (4.12).
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Table 31

Estimated Power of yz x(k) :
{Xt} MA(1) Residuals of a BL(0,0,1,1) Model at Sample Size 250

a
Pr(Reject) 
for k - 1

Pr(Reject) 
for k - 2

Pr(Reject) 
for k - 3

Pr(Reject) 
for k - 4

Pr(Reject) 
for k - 5

0.9 .559 .587 .278 .156 .098
0 . 8 .475 .586 .208 .105 .065
0.7 .404 .539 .139 .067 .045
0 . 6 .494 .427 .082 .047 .038
0.5 .736 .280 .055 .043 .041
0.4 .901 .143 .044 .045 .041
0.3 .937 .071 .045 .048 .046
0 . 2 .801 .048 .045 .044 .045
0 . 1 .318 .049 .046 .048 .045

- 0 -Vi- et-i + ct- et-N(0,1)
Probabilities based on Monte Carlo simulations with 10000 
iterations in which a BL(0,0,1,1) series was generated vith 250 
observations, an MA(1) model was fitted to the series, 7 2 x(k) 
was calculated on the pesiduals and a rejection was counted if 
the absolute value of 72 .(k) was greater than twice the standard 
deviation of 72 x(k) as given in Equation (4.12).
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Table 32

Estimated Power of y2 x(k) :
(Xt) MA(1) Residuals of a BL(0,0,1,1) tfodel at Sample Size 500

&
Pr(Reject) 
for k - 1

Pr(Reject) 
for k - 2

Pr(Reject) 
for k - 3

Pr(Rej ect) 
for k - 4

Pr (Reject) 
for k - 5

0.9 .671 .736 .424 .240 .140
0.8 .575 .763 .328 .159 .086
0.7 .455 .744 .217 .098 .055
0.6 .553 .637 .116 .056 .040
0.5 .843 .449 .063 .043 .041
0.4 .981 .214 .045 .042 .043
0.3 .996 .088 .047 .046 .046
0.2 .981 .052 .046 .043 .048
0.1 .569 .043 .045 .045 .047

■ 0-Xw' et-i + €t> et~N(0,1)
Probabilities based on Monte Carlo simulations with 10000 
iterations in which a BL(0,0,1,1) series was generated with 
500 observations, an MA(1) model was fitted to the 
series, -y2 x(k) was calculated on the residuals £nd a 
rejection was counted if the absolute value of y2 r(k) was 
greater than twice the standard deviation of y2 x(lc) as given 
in Equation (4.12).
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Table 33

Estimated Power of yz 1(k) :
{Xt} AR(1) Residuals of TAR(l) Model at Sample Size 100

a
Pr(Reject) 
for k - 1

Pr(Reject) 
for k - 2

Pr (Reject) 
for k - 3

Pr(Reject) 
for k - 4

Pr(Rejec' 
for k -

-0.9 .223 .057 .059 .047 .049
-0.8 .160 .056 .053 .055 .051
-0.7 .114 .053 .052 .055 .056
-0.6 .084 .053 .049 .051 .049
-0.5 .061 .051 .053 .052 .048
-0.4 .051 .054 .052 .047 .047
-0.3 .060 .055 .049 .051 .049
-0.2 .075 .056 .049 .052 .052
-0.1 .095 .055 .049 .047 .047

x t “  +  £ t. ^  x t-i *  1

xt “ --A -xt-i + et. if xt-i < i* et-NC0.1)
Probabilities based on Monte Carlo simulations with 10000 
iterations in which a TAR(l) series was generated with 500 
observations, an AR(1) model was fitted to the 
series, yz ̂ k) was calculated on the residuals jpnd a 
rejection was counted if the absolute value of yz x(k) was 
greater than twice the standard deviation of yz 1(’k) as given 
in Equation (4.12).
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Table 34

Estimated Power of yz x(k):
{Xt} AR(1) Residuals of TAR(l) Model at Sample Size 250

Q
Pr(Reject) 
for k - 1

Pr(Reject) 
for k - 2

Pr(Reject) 
for k - 3

Pr (Reject) 
for k - 4

Pr(Reje 
for k <

-0.9 .436 .061 .065 .047 .051
-0.8 .311 .057 .050 .050 .050
-0.7 .189 .051 .048 .046 .050
-0.6 .117 .048 .049 .051 .048
-0.5 .067 .046 .045 .048 .049
-0.4 .053 .048 .047 .048 .048
-0.3 .060 .051 .047 .048 .045
-0.2 .104 .054 .050 .045 .044
-0.1 .169 .054 .051 .046 .047

xt " “ -xt-i + if Xt-i ^ 1
xt “ -■^•xt-i + «t. if Xt-i < 1.

Probabilities based on Monte Carlo simulations with 10000 
iterations in which a TAR(l) series was generated with 250 
observations, an AR(1) model was fitted to the 
series, 7 2 1(k) was calculated on the residuals £nd a 
rejection was counted if the absolute value of 72 x(k) was 
greater than twice the standard deviation of 72 1(lc) as given 
in Equation (4.12).
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Table 35

Estimated Power of y2 1(k):
(Xt) AR(1) Residuals of TAR(l) Model at Sample Size 500

a
Pr(Reject) 
for k - 1

Pr(Reject) 
for k - 2

Pr(Reject) 
for k - 3

Pr(Reject) 
for k - 4

Pr(Reje 
for k ■

-0.9 .706 .073 .069 .049 .048
-0.8 .500 .064 .057 .049 .048
-0.7 .328 .053 .048 .046 .045
-0.6 .163 .050 .047 .048 .042
-0.5 .078 .047 .049 .044 .046
-0.4 .047 .048 .047 .047 .046
-0.3 .072 .045 .044 .047 .044
-0.2 .160 .047 .049 .044 .047
-0.1 .303 .049 .047 .051 .047

Xt - a-Xw  + <t, if Xt.j ;> 1

Xt - * -4‘Xt-i + et. if Xt-i < 1.
Probabilities based on Monte Carlo simulations with 10000 
iterations in which a TAR(l) series was generated with 500 
observations, an AR(1) model was fitted to the 
series, y2 x(k) was calculated on the residuals jpnd a 
rejection was counted if the absolute value of y2 j(k) was 
greater than twice the standard deviation of y2 x(lc) as given 
in Equation (4.12).
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Table 36

Estimated Power of Portmanteau Statistics:
Threshold Autoregressive and Bilinear Models

T - 100

T - 250

T - 500

Threshold1
Autoregressive Model Bilinear Model2

?1 5 .191 .503
P1>10 .177 .407

P1>5 .340 .746
Plil0 .335 .654

P15 .518 .879

Pi, 10 -567 .821

1 Xt - - • 9•Xt_1 + et, if XH  2: 1

Xt " - .4-Xt-i + et, if Xt_j < 1, et~N(0,l)

2 Xt - - . 9 ^ . , - ^  + et, et-N(0,l)

3T - Sample size.

These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, a 
series of length T of the particular stochastic process was 
generated, the portmanteau statistics Px 5 and Px 10 were 
calculated and a rejection was recorded 'if the observed 
values of Px 5 and Px 10 were significant at the 5% level.
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Table 37
Estimated Power of BDS Statistic:
(Xt) Threshold Autoregressive Model

r /a 1
0.25 0.50 1.00 1.50 2.00 a Level2

D-2.T-1003 .674 .773 .516 .312 .248 .05

D-2.T-500 .969 .976 .932 .756 .471 .05

D-2.T-1000 1.00 1.00 1.00 .949 .721 .05

D-5.T-500 .816 .841 .801 .594 .366 .05

D-5.T-1000 .860 .986 .972 .857 .601 .05

*r - Scaling Parameter 
a - Standard Deviation of the Series

2a - Probability of rejection under the null hypothesis of i.i.d.
D - Embedding dimension and T - Sample size

Xt - .5-X^ + etl if Xw  2s 1
Xt - + et, if Xw  < 1, et~N(0,1)

The power of the BDS statistics based on Monte Carlo results
reported in Hsieh and LeBaron (1988), Table 10.
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Table 38
Estimated Power of y2 :(k) at Lag k:

{Xt) Threshold Autoregressive Model’Studied by Hsieh and LeBaron

Lag.k T - 1 0 0  1 T - 250 T - 500 T - 1000

1 .349 .799 .967 1 . 0 0

2 .059 .069 .099 .164

3 .052 .037 .041 .060

4 .053 .038 .046 .038

5 .059 .039 .029 .045

*T - Sample size.

xt " -5’xt-i + etl if Xw  > 1
xt “ --4’xt-i + £t. ^  xt-i < 1. et-N(0,l)

Threshold autoregressive model is same as the one for 
results reported above in Table 37. Probabilities based on 
Monte Carlo simulations with 10000 iterations in which a 
TAR(l)„series was generated for the given sample 
size, 7 Zii(k) was calculated on the series and a rejection 
was counted if the absolute valup of y2 x(k) was greater than 
twice the standard deviation of 7, .(k) as given in Equation
(4.12).
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Table 39

Estimated Power of Hinich Linearity Test:
{Xfc) Bilinear and Threshold Autoregressive

Bilinear1 Threshold Autoregressive2
80% Quantile 80% Quantile

T1- 256 .78 .33

T - 512 .96 .55

T - 1024 1.00 .80

1 Xt - .7-X^-e^ + £t, et~N(0,1)

2 x t  -  - . 9 - X w  +  £t , i f  Xw  2: 1

xt “ --4-xt-i + ^  xt-i < 1. «t~N(0.1>

3T - Sample size.

These Monte Carlo results reported in Ashley, Pattterson and 
Hinich (1986), Table 3.
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Table 40

Estimated Power of y2 1(k) at Lag k:
{Xt} Threshold Autoregressive Model Studied

by Ashley, Patterson and Hinich

Lag k T1 - 100 T - 250 T - 500 T - 1000

1 .585 .920 .997 1.00

2 .043 .051 .072 .071

3 .048 .054 .037 .047

4 .052 .056 .041 .031

5 .050 .057 .054 .041

lT - Sample size.

xt " -• + et, if Xw  £ 1
Xt - .4-X^ + et, if Xt.x < 1, et~N(0,l)

Threshold autoregressive model is same as the one for 
results reported above in Table 39. Probabilities based on 
Monte Carlo simulations with 10000 iterations in which a 
TAR(l)„series was generated for the given sample 
size, y2 x(k) was calculated on the series and a rejection 
was counted if the absolute valug of y2 j(k) was greater than 
twice the standard deviation of y2 ,(k) 'as given in Equation
(4.12).
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T - 100

T - 250

T - 500

T - 1000

Table 41

Estimated Power of Portmanteau Statistics: 
Threshold Autoregressive and Bilinear Models 

Studied by Ashley, Patterson and Hinich

Threshold1
Autoregressive Model Bilinear Model2

P15 .384 .377
P1>10 .297 .276

Pj 5 .736 .619
P110 .585 .503

5 .979 .797
Pltl0 .931 .700

P15 1.000 .936
P1 10 .999 .886

1 Xt - - . 5 •Xt.1 + 6t, if Xt.1 £ 1

Xt " -4'xt-i + if xt-i < 1. «t-N(0,l)

2 xt " •7,Xt_1,et.1 + et, et-N(0,l)

3T - Sample size.
These results are based on Monte Carlo simulations with 
10000 iterations for each sample size. In each iteration, a 
series of length T of the particular stochastic process was 
generated, the portmanteau statistics Pj 5 and Pj 10 were 
calculated and a rejection was recorded 'if the observed 
values of Px 5 and Px 10 were significant at the 5% level.
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Table 42

Portmanteau Statistics for Economic Time Series

Series P 1 *1. 5 ^1 , 1 0 ^1 , 2 0
Pri, 3 0

Sunspot Data 26.03 37.69 59.09 61.72
Lynx Data 4.87 8.14
Nominal GNP 4.83 10.56 33.67 58.80
Unemployment
Rate

20.23 52.38 77.98 83.96

Capacity Util. 
Rate

21.85 23.40 24.82 37.32

Pigiron 81.86 98.75 116.32 121.44
Cotton Prices 22.80 58.91 99.11 192.97
Stock Returns 70.90 109.10 168.85 216.04

^he 5% significance level for the chisquare distribution are:
*2(5) - ll.l, *2(10) - 18.3, x2(20) - 31.4 and *2(30) - 43.8.

For each series, except the Stock Returns series, an ARMA 
model was first fitted to the data. Then the portmanteau 
statistics P1 5 . 1*1,1 0> **1 , 2 0 an<* 1*1 , 3 0 were calculated on the 
ARMA residual’s.



www.manaraa.com

-117-
References

Ashley, R.A, D.M. Patterson and M.J.Hinich (1986). "A Diagnostic 
Test for Nonlinear Serial Dependence in Time Series Fitting 
Errors." Journal of Time Series Analysis. 7:165-178.

Bartlett, M.S. (1946). "On the Theoretical Specification of Sampling 
Properties of Autocorrelated Time Series". Journal of the Roval 
Statistical Society Supplement. 8:27-41.

Berge, P., Y. Pomeau and C. Vidal (1984). Order Within Chaos:
Towards a Deterministic Approach to Turbulence. New York: John
Wiley and Sons.

Blanchard, 0. and S. Fischer (1989). Lectures on Macroeconomics.
Cambridge, Massachusetts: The MIT Press.

Blanchard, 0. and L. Summers (1986). "Hysteresis and the European 
Unemployment Problem". NBER Macroeconomics Annual. 1:15-78. 

Blatt, J.M. (1980). "On the Frisch Model of Business Cycles".
Oxford Economic Papers. 32:467-479.

Blatt, J.M (1983). Dynamic Economic Systems. Armonk, N.Y.: M.E.
Sharpe.

Box, G. and G. Jenkins (1970). Time Series Analysis- Forecasting and 
Control, San Francisco: Holden Day.

Brillinger, D.R. (1965). "An Introduction to the Polyspectrum", 
Annals of Mathematical Statistics. 36:1351-1374 

Brillinger, D. and M. Rosenblatt (1967). "Computation and
Interpretation of k-th Order Spectra", in Harris, B. (ed.) 
Spectral Analysis of Time Series.

Brock, W.A., W.D. Dechert and J.A. Scheinkman (1988). "A Test for 
Independence Based on the Correlation Dimension," in Barnett,



www.manaraa.com

-118-
W., E. Berndt and H. White, (eds.) Dynamic Econometric Modelling. 
Proceedings of the Third International Symposium on Economic 
Theory and Econometrics. Cambridge: Cambridge University Press.

Burns, A.F. and W.C. Mitchell (1947). Measuring Business Cycles.
New York: National Bureau of Economic Research.

Campbell, M.J. and A.M. Walker (1977). "A Survey of Statistical Work 
on the Mackenzie River Series of Annual Canadian Lynx Trappings 
for the Years 1821-1934, and a New Analysis", Journal of the 
Royal Statistical Society. Series A. 140:411-431.

Chatfield, C. (1975). The Analysis of Time Series: Theory and 
Practice. London: Chapman and Hall.

Daniels, H.E. (1946). Discussion to "Symposium on Autocorrelation 
in Time Seires". Journal of the Roval Statistical Society. 8 
(Supplement), 29-97.

DeLong, J.B. and L.H. Summers (1986). "Are Business Cycles
Symmetric?", in American Business Cycle: Continuity and Change,
edited by R. Gordon, NBER and University of Chicago Press. 

Eichenbaum, M.E. and K.J. Singleton (1986). "Do Equilibrium Real 
Business Cycle Theories Explain Postwar U.S. Business Cycles?" 
NBER Macroeconomics Annual. 1:91-135.

Falk, B. (1986). "Further Evidence of the Asymmetric Behavior of 
Economic Time Series Over the Business Cycle." Journal of 
Political Economy. 94:1096-1109.

Frisch, R. (1933). "Propagation Problems and Impulse Problems in 
Dynamic Economics." In Essays in Honour of Gustav Cassel.
London: Allen and Unwin.

Gately, D. and P. Rappoport (1986). "The Adjustment of U.S. Oil



www.manaraa.com

-119-
Demand to the Price Increases of the 1970s", The Energy Journal. 
9:93-107.

Georgescu-Roegen, N. (1950). "The Theory of Choice and the Constancy 
of Economic Laws", Quarterly Journal of Economics. 64:125-138.

Ghaddar, D.K. (1980). "Some Diagnostic Checks of Non-Linear Time 
Series Models", M.Sc. Dissertation, University of Manchester,
U.K.

Hallin, M., C. Lefevre and M. Puri (1988). "On Time-Reversibility 
and the Uniqueness of Moving Average Representations for Non- 
Gaussian Stationary Time Series", Biometrika. 75:170-1.

Hinich, M.J. (1982). "Testing for Gaussianity and Linearity of a
Stationary Time Series". Journal of Time Series Analysis. 3:169- 
176.

Hinich, M. and D. Patterson (1985a). "Evidence of Nonlinearity in 
Daily Stock Returns." Journal of Business and Economic 
Statistics. 3:69-77.

Hinich, M. and D. Patterson (1985b). "Identification of the
Coefficients in a Nonlinear Time Series of the Quadratic Type." 
Journal of Econometrics. 30:269-288.

Hinich, M. and D. Patterson (1987). "Evidence of Nonlinearity in
the Trade-by-Trade Stock Market Return Generating Process", 
Working Paper, July, University of Texas at Austin.

Hsieh, D. (1988). "Testing for Nonlinear Dependence in Foreign
Exchange Rates: 1974-1983", manuscript, Department of Economics,
University of Chicago.

Hsieh, D. and B. LeBaron (1988). "Finite Sample Properties of the 
BDS Statistics", Department of Economics, University of Chicago



www.manaraa.com

-120-
...

and University of Wisconsin-Madison.
Kendall, M.G. and A. Stuart (1962). The Advanced Theory of

Statistics. Vol. I. New York: Hafner Publishing Company.
Keynes, J.M. (1936). The General Theory of Employment. Interest and 

Money. London: Macmillan.
Lawrance, A.J. (1988). "Directionality and Reversibility in Time

Series", School of Mathematics and Statistics, University of 
Birmingham, UK. Forthcoming in the International Statistical 
Review.

LeBaron, B. (1988). "Stock Return Nonlinearities: Comparing Tests 
and Finding Structure", Department of Economics, University of 
Wisconsin-Madison.

Lindgren, B.W. (1976). Statistical Theory. New York: Macmillan.
Lim, K.S. (1981). "On Threshold Time Series Modelling", Ph.D.

Thesis, University of Manchester, U.K.
Lucas, R.E. Jr. (1973). "Some International Evidence on Out-

Inflation Trade-offs", American Economic Review. 63:326-334. 
Mitchell, W.C. (1927). Business Cycles: The Problem and Its

Setting. New York: National Bureau of Economic Research.
Morris, J. (1977). "Forecasting the Sunspot Cycle", Journal of the 

Roval Statistical Society. Series A. 140:437-447.
Neftci, S.N. (1984). "Are Economic Time Series Asymmetric Over the 

Business Cycle?" Journal of Political Economy. 92:307-328. 
Nelson, C. and C. Plosser (1982). "Trends and Random Walks in 

Macroeconomic Time Series", Journal of Monetary Economics. 
10:139-162.

Pomeau, Y. (1982). "Symetrie Des Fluctuations Dans Le Renversement



www.manaraa.com

-121 -

Du Temps", JOURNAL DE PHYSIQUE. 6:859-866.
Potter, S. (1989). "A Nonlinear Approach to U.S. GNP", Department of 

Economics, University of Wisconsin-Madison.
Priestley, M.B. (1984). Spectral Analysis and Time Series. New 

York: Academic Press (3rd printing).
Ramsey, J.B. and A. Montenegro (1988). "The Identifiability and

Estimability of Non-Invertible MA(Q) Models." C.V Starr Center 
Working Paper No. 88-08.

Rosenblatt, M. and J. Van Ness (1965). "Estimation of the
Bispectrum". The Annals of Mathematical Statistics. 36:1120- 
1136.

Rothman, P. (1988). "Further Evidence on the Asymmetric Behavior of 
Unemployment Rates over the Business Cycle", forthcoming in the 
Journal of Macroeconomics.

Sargent, T.J. (1979). Macroeconomic Theory. New York: Academic
Press.

Scheinkman, J.A. and B. Le Baron (1987). "Nonlinear Dynamics and GNP 
Data", in Barnett, W., J. Geweke and K. Shell, (eds.) Economic 
Complexity. Chaos. Sunspots. Bubbles, and Nonlinearitv.
Cambridge: Cambridge University Press.

Sichel, D.E. (1989). "Are Business Cycles Asymmetric? A
Correction", Journal of Political Economy. 94, October.

Slutsky, E. (1937). "The Summation of Random Causes as the Source of
Cyclic Processes." Econometrica. 5:618-626.

Stokes, H. and M. Hinich (1989). "Further Diagnostic Tests for
Checking the Appropriate Identification of Linear VAR and VARMA 
Models", Department of Economics, University of Illinois at



www.manaraa.com

-122-

Chicago, and Department of Government, University of Texas at 
Austin.

Sweeney, J., with D. Fenichel (1986). "Price Asymmetries in the 
Demand for Energy", Technical Report. Stanford University,
Center for Economic Policy Research, June.

Subba Rao, T.S. and M.M. Gabr (1984). An Introduction to Bispectral 
Analysis and Bilinear Time Series Models. New York: Springer-
Verlag. Lecture Notes in Statistics. Vol. 24.

Tong, H. (1977). "Some Comments on the Canadian Lynx Data (with
Discussion)", Journal of the Roval Statistical Society. Series A . 
140:432-435, 448-468.

Tong, H. (1983). Threshold Models in Non-linear Time Series 
Analysis. New York: Springer-Verlag. Lecture Notes in
Statistics. Vol. 11.

Tong, H. and K.S. Llm (1980). "Threshold Autoregression, Limit
Cycles and Cyclical Data (with Discussion)", Journal of the Roval 
Statistical Society. Series B. 42:245-292.

Yule, G.U. (1927). "On a Method of Investigating Periodicities in 
Disturbed Series with Special Reference to Wolfer's Sunspot 
Numbers", Philosophical Transcripts of the Roval Society of 
London. Series A. 226:267-298.

Wecker, W.E. (1981). "Asymmetric Time Series." Journal of the 
American Statistical Association. 76:16-21.

Weiss, G. (1975). "Time-Reversibility of Linear Stochastic 
Processes", Journal of Applied Probability. 12:831-836.

Welsh, A.K. and Jernigan, R.W. (1983). "A Statistic to Identify
Asymmetric Time Series." American Statistical Association 1983



www.manaraa.com

-123-
Proceedings of the Business and Economics Statistics Section. 

Wolfram, S. (1988). Mathematlca: A System for Doing Mathematics bv
Computer. New York: Addison-Wesley.



www.manaraa.com

Ea
t.
 
Su
mm
at
ri
c-
Bi
co
ua
ri
an
ca
 
at 

Lag
 

k

Fi Rure I

Eat. Sgmaetrie-Bicouarianea Funet. Tor 

ARt1A(8>6) Raalduala of Sunapot Data

«. 09

a 2 4 6 B IB

Lag k



www.manaraa.com

Ea
t.
 
Su
mn
at
ri
c-
Bi
co
ua
ri
an
ca
 
at 

Lag
 

k
F i g u r e  2 

Eat. Summatrie-Bicouarianca Funet. for 

ARMAO,3) Raaiduala of Lgnx Oata

1.3

0.26

0 2 4 6 B 10

Lag k



www.manaraa.com

Es
t.
 
Su
nm
at
ri
c-
Bi
co
va
ri
an
ca
 

at 
Lag

 
k

Figure 3

Eat. Sunaatrie-Bicouarianea Eunct. for 

ARMA<6,6> Raa. Noainal QNP drouth Rataa

1

• .7

• .4

• .1

e.2

e.e

• le 2e at 46 Be

Lag k



www.manaraa.com

Ea
t.
 
Su
rn
ma
tr
ic
-B
ic
ou
ar
ia
nc
a 

at 
Lag

 
k

Figure U

Eat. Sgmmatric-Bieooarianca Funct. for 

ARB Raaids of Monthly Unaniplogmant Rata

1.3

• .46

• • 64

8* SB16!•

Lag k



www.manaraa.com

Eat
* 

Su
am
at
ri
c-
Bi
co
ua
ri
an
ca
 

at 
Lag

 
k

Figure 5

Eat. Bgaaatrie-Bicouarianea Eunet. Tar 

AR3 Raaida Tor Hanuf. Cap. Utilization

6.6

• 26 46 66 66 166

Lag k



www.manaraa.com

Ea
t.
 
Su
—

tr
lc
-B
Ie
ou
»r
l«
nc
« 

at 
Lao
 

k

Figure 6 
Eat. Sufflaatrie~Bicouarianca Eunct. Tor

NA3 Raaida of Plgiron Qrowth Rataa

1.4

a la 2a ae 4t se

Lag k



www.manaraa.com

Ea
t.
 
Su
na
at
ri
c-
Bi
eo
ua
ri
an
ea
 

at 
Lag

 
k

Figure 7

Eat. Summetric-Bicouarianca Punct. for 

Computed CRSP Stock Ratumi Data

• .11

e se e« se is* ise

Lag k



www.manaraa.com

Figure 8

Cat. 8ummatric~Bicouarianca Punct. Tor 

AR<2> Raaiduala or Spot Cotton Prices

• .86

• .16

• .24

e»26 361*

Lag k


